設(shè)橢圓
x2
m2
+
y2
n2
=1
(m>0,n>0)的一個(gè)焦點(diǎn)與拋物線x2=4y的焦點(diǎn)相同,離心率為
1
3
則此橢圓的方程為( 。
分析:先求出焦點(diǎn)的坐標(biāo),再由離心率求得半長(zhǎng)軸的長(zhǎng),從而得到短半軸長(zhǎng)的平方,寫出橢圓的標(biāo)準(zhǔn)方程.
解答:解:拋物線x2=4y的焦點(diǎn)為(0,1),
∴橢圓的焦點(diǎn)在y軸上,
∴c=1,
由離心率 e=
1
3
,可得a=3,∴b2=a2-c2=8,
故橢圓的標(biāo)準(zhǔn)方程為
x2
8
+
y2
9
=1

故選B.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),拋物線的簡(jiǎn)單性質(zhì)以及求橢圓的標(biāo)準(zhǔn)方程的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
m2
+
y2
n2
=1
(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為
1
2
,則此橢圓的方程為( 。
A、
x2
12
+
y2
16
=1
B、
x2
16
+
y2
12
=1
C、
x2
48
+
y2
64
=1
D、
x2
64
+
y2
48
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
m2
+
y2
n2
=1
,雙曲線
x2
m2
-
y2
n2
=1
、拋物線y2=2(m+n)x(其中m>n>0)的離心率分別為e1,e2,e3,則( 。
A、e1e2>e3
B、e1e2<e3
C、e1e2=e3
D、e1e2與e3大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè)雙曲線與橢圓
x2
27
+
y2
36
=1
有相同的焦點(diǎn),且與橢圓相交,一個(gè)交點(diǎn)A的縱坐標(biāo)為4,求此雙曲線的標(biāo)準(zhǔn)方程.
(2)設(shè)橢圓
x2
m2
+
y2
n2
=1
(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為
1
2
,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)設(shè)橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為
1
2
,求橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)雙曲線與橢圓
x2
27
+
y2
36
=1有相同的焦點(diǎn),且與橢圓相交,一個(gè)交點(diǎn)A的縱坐標(biāo)為4,求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦點(diǎn)與拋物線y2=8x的焦點(diǎn)相同,離心率為
1
2
,則此橢圓的短軸長(zhǎng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案