在四面體ABCD中,已知棱AC的長為
6
,其余各棱長都為2,則二面角A-BD-C的大小為
π
2
π
2
分析:取BD的中點E,連接AE、CE,證明∠AEC就是A-BD-C的二面角,解三角形ACE即可得到二面角A-BD-C的大。
解答:解:取BD的中點E,連接AE、CE
∵AB=AD=BC=CD,
∴CE⊥BD,AE⊥BD
∴∠AEC就是A-BD-C的二面角
∵AB=AD=BD=BC=CD=2,
∴AE=CE=
3

∵AC=
6

∴∠AEC=
π
2

即二面角A-BD-C的大小為
π
2

故答案為:
π
2
點評:本題考查二面角的平面角及求法,其中構造出二面角A-BD-C的平面角∠AEC是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在四面體ABCD中,設AB=1,CD=2且AB⊥CD,若異面直線AB與CD間的距離為2,則四面體ABCD的體積為( 。
A、
1
3
B、
1
2
C、
2
3
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)在四面體ABCD中,M、N分別是面△ACD、△BCD的重心,則四面體的四個面中與MN平行的是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將圖1中的等腰直角三角形ABC沿斜邊BC的中線折起得到四面體ABCD(如圖2),則在四面體ABCD中,AD與BC的位置關系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四面體ABCD中,截面EFGH平行于對棱AB和CD,且FG⊥GH,試問截面在什么位置時其截面面積最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四面體ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,則四面體ABCD的外接球的半徑為
3
3

查看答案和解析>>

同步練習冊答案