設(shè)實(shí)數(shù)a,b,c,d,e滿足a+b+c+d+e=8,且a2+b2+c2+d2+e2=16,試確定e的最大值.

解析:由已知得a+b+c+d=8-e,a2+b2+c2+d2=16-e2

所以(8-e)2=(a+b+c+d)2

≤(a2+b2+c2+d2)(12+12+12+12)

=4(16-e2),

化簡(jiǎn)得5e2-16e≤00≤e≤,

所以emax=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3-ax2-bx-c,x∈[-1,1],記y=|f(x)|的最大值為M.
(Ⅰ)當(dāng)a=c=0,b=
34
時(shí),求M的值;
(Ⅱ)當(dāng)a,b,c取遍所有實(shí)數(shù)時(shí),求M的最小值.
(以下結(jié)論可供參考:對(duì)于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,當(dāng)且僅當(dāng)a,b,c,d同號(hào)時(shí)取等號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專(zhuān)題十七 選修系列 題型:解答題

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請(qǐng)考生任選2題作答,滿分14分。如果多做,則按所做的前兩題記分。作答時(shí),先用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣M=,N=,且MN=。
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對(duì)應(yīng)的線性變換作用下的像的方程。
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線L的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為=2sin。
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線L交于點(diǎn)A,B。若點(diǎn)P的坐標(biāo)為(3,),求∣PA∣+∣PB∣。
(3)(本小題滿分7分)選修4-5:不等式選講
已知函數(shù)f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x) 3的解集為,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省瑞安十校高二第二學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)實(shí)數(shù)a,b,c滿足,則a,b,c中(      )

A.至多有一個(gè)不大于0                   B.至少有一個(gè)不小于0

C.至多有兩個(gè)不小于0               D.至少有兩個(gè)不小于0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在中,點(diǎn)上的一點(diǎn),且,的中點(diǎn),交于點(diǎn),設(shè),,則實(shí)數(shù)(    ).

A.                B.              C.              D.

 

 

 

 

 

 


查看答案和解析>>

同步練習(xí)冊(cè)答案