(2013•浙江)設(shè)F為拋物線(xiàn)C:y2=4x的焦點(diǎn),過(guò)點(diǎn)P(-1,0)的直線(xiàn)l交拋物線(xiàn)C于兩點(diǎn)A,B,點(diǎn)Q為線(xiàn)段AB的中點(diǎn),若|FQ|=2,則直線(xiàn)l的斜率等于
不存在
不存在
分析:由題意設(shè)直線(xiàn)l的方程為my=x+1,聯(lián)立
my=x+1
y2=4x
得到y(tǒng)2-4my+4=0,△=16m2-16=16(m2-1)>0.設(shè)A(x1,y1),B(x2,y2),Q(x0,y0).利用根與系數(shù)的關(guān)系可得y1+y2=4m,利用中點(diǎn)坐標(biāo)公式可得y0=
y1+y2
2
=2m,x0=my0-1=2m2-1.Q(2m2-1,2m),由拋物線(xiàn)C:y2=4x得焦點(diǎn)F(1,0).再利用兩點(diǎn)間的距離公式即可得出m及k,再代入△判斷是否成立即可.
解答:解:由題意設(shè)直線(xiàn)l的方程為my=x+1,聯(lián)立
my=x+1
y2=4x
得到y(tǒng)2-4my+4=0,△=16m2-16=16(m2-1)>0.
設(shè)A(x1,y1),B(x2,y2),Q(x0,y0).
∴y1+y2=4m,∴y0=
y1+y2
2
=2m,∴x0=my0-1=2m2-1.
∴Q(2m2-1,2m),
由拋物線(xiàn)C:y2=4x得焦點(diǎn)F(1,0).
∵|QF|=2,∴
(2m2-2)2+(2m)2
=2
,化為m2=1,解得m=±1,不滿(mǎn)足△>0.
故滿(mǎn)足條件的直線(xiàn)l不存在.
故答案為不存在.
點(diǎn)評(píng):本題綜合考查了直線(xiàn)與拋物線(xiàn)的位置關(guān)系與△的關(guān)系、根與系數(shù)的關(guān)系、中點(diǎn)坐標(biāo)關(guān)系、兩點(diǎn)間的距離公式等基礎(chǔ)知識(shí),考查了推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)設(shè)
e1
、
e2
為單位向量,非零向量
b
=x
e1
+y
e2
,x、y∈R.若
e1
e2
的夾角為30°,則
|x|
|
b
|
的最大值等于
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)設(shè)m、n是兩條不同的直線(xiàn),α、β是兩個(gè)不同的平面,( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)設(shè)a,b∈R,若x≥0時(shí)恒有0≤x4-x3+ax+b≤(x2-1)2,則ab等于
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•浙江)設(shè)袋子中裝有a個(gè)紅球,b個(gè)黃球,c個(gè)藍(lán)球,且規(guī)定:取出一個(gè)紅球得1分,取出一個(gè)黃球2分,取出藍(lán)球得3分.
(1)當(dāng)a=3,b=2,c=1時(shí),從該袋子中任。ㄓ蟹呕,且每球取到的機(jī)會(huì)均等)2個(gè)球,記隨機(jī)變量ξ為取出此2球所得分?jǐn)?shù)之和.,求ξ分布列;
(2)從該袋子中任。ㄇ颐壳蛉〉降臋C(jī)會(huì)均等)1個(gè)球,記隨機(jī)變量η為取出此球所得分?jǐn)?shù).若Eη=
5
3
,Dη=
5
9
,求a:b:c.

查看答案和解析>>

同步練習(xí)冊(cè)答案