(1)求證:AC1∥平面CDB1;
(2)求異面直線(xiàn)AC1與B1C所成角的余弦值.
思路解析:本題第一問(wèn)要證明直線(xiàn)與平面平行,可以圍繞著線(xiàn)面平行的判定定理,轉(zhuǎn)而去證明線(xiàn)線(xiàn)平行,結(jié)合已知條件不難得以證明;第二問(wèn)是要求異面直線(xiàn)所成的角,就要考慮平移其中一條(或兩條)直線(xiàn),從而轉(zhuǎn)化為相交兩直線(xiàn)所成的角的問(wèn)題,從而得以求解.
(1)證明:設(shè)CB1與C1B的交點(diǎn)為E,連結(jié)DE.
∵D是AB的中點(diǎn),E是BC1的中點(diǎn),
∴DE∥AC1.
∵DE平面CDB1,AC1平面CDB1,
∴AC1∥平面CDB1.
(2)解:∵DE∥AC1,∴∠CED為AC1與B1C所成的角.
在△CED中,ED=AC1=,CD=AB=,CE=CB1=2,
∴由余弦定理得
cos∠CED=.
∴異面直線(xiàn)AC1與B1C所成角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:導(dǎo)學(xué)大課堂必修二數(shù)學(xué)蘇教版 蘇教版 題型:022
如下圖,有兩個(gè)相同的直三棱柱,高為,底面三角形的三邊長(zhǎng)分別為3a、4a、5a(a>0).用它們拼成一個(gè)三棱柱或四棱柱,在所有可能的情形中,全面積最小的是一個(gè)四棱柱,則a的取值范圍是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:022
(2005
上海,11)如下圖,有兩個(gè)相同的直三棱柱,高為,底面三角形的三邊長(zhǎng)分別為3a、4a、5a(a>0).用它們拼成一個(gè)三棱柱或四棱柱,在所有可能的情況中,全面積最小的是一個(gè)四棱柱,則a的取值范圍是________.查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求證:AB1⊥BC1;
(2)求二面角B—AB1—C的大;
(3)求點(diǎn)A1到平面AB1C的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如下圖所示,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB,D,E分別為棱C1C,B1C1的中點(diǎn)。
(1)求點(diǎn)B到面A1C1CA的距離;
(2)求二面角B―A1D―A的大;
(3)在線(xiàn)段AC上是否存在一點(diǎn)F,使得EF⊥平面A1BD?若存在,確定其位置并證明結(jié)論;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如下圖所示,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB,D,E分別為棱C1C,B1C1的中點(diǎn)。
(1)求點(diǎn)B到面A1C1CA的距離;
(2)求二面角B―A1D―A的大;
(3)在線(xiàn)段AC上是否存在一點(diǎn)F,使得EF⊥平面A1BD?若存在,確定其位置并證明結(jié)論;若不存在,說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com