已知F是橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)的左焦點,若橢圓上存在點P,使得直線PF與圓x2+y2=b2相切,當直線PF的傾斜角為
3
,則此橢圓的離心率是(  )
A.
2
7
7
B.
2
5
5
C.
2
2
D.
3
2
設(shè)橢圓的左焦點為(-c,0),c=
a2-b2
,
∵直線PF的傾斜角為
3
,
則直線PF的方程為
3
x+y+
3
c=0

∵直線PF為圓O:x2+y2=b2的一條切線
|
3
c|
2
=b
,即b=
3
2
c
,
a2=b2+c2=
7
4
c2

e=
c
a
=
2
7
7

故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知F是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左焦點,P是橢圓上的一點,PF⊥x軸,OP∥AB(O為原點),則該橢圓的離心率是(  )
A、
2
2
B、
2
4
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A是橢圓短軸上的一個頂點,橢圓的離心率為
1
2
,點B在x軸上,AB⊥AF,A、B、F三點確定的圓C恰好與直線x+
3
y+3=0
相切.
(1)求橢圓的方程;
(2)設(shè)O為橢圓的中心,過F點作直線交橢圓于M、N兩點,在橢圓上是否存在點T,使得
OM
+
ON
+
OT
=
0
,如果存在,則求點T的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•溫州二模)已知F是橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)的左焦點,若橢圓上存在點P,使得直線PF與圓x2+y2=b2相切,當直線PF的傾斜角為
3
,則此橢圓的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A是橢圓短軸上的一個頂點,橢圓的離心率為
1
2
,點B在x軸上,AB⊥AF,A,B,F(xiàn)三點確定的圓C恰好與直線x+
3
y+3=0
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在過F作斜率為k(k≠0)的直線l交橢圓于M,N兩點,P為線段MN的中點,設(shè)O為橢圓中心,射線OP交橢圓于點Q,若
OM
+
ON
=
OQ
,若存在求k的值,若不存在則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上饒一模)已知F是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點,A是橢圓短軸上的一個頂點,橢圓的離心率為
1
2
,點B在x軸上,AB⊥AF,A、B、F三點確定的圓C恰好與直線x+
3
y+3=0
相切.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為橢圓的中心,是否存在過F點,斜率為k(k∈R,l≠0)且交橢圓于M、N兩點的直線,當從O點引出射線經(jīng)過MN的中點P,交橢圓于點Q時,有
OM
+
ON
=
OQ
成立.如果存在,則求k的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案