已知角α的終邊經(jīng)過點P(-3,-
3
).
(Ⅰ)求sinα、cosα、tanα的值;
(Ⅱ)求
1+sinα
1-sinα
-
1-sinα
1+sinα
的值.
考點:任意角的三角函數(shù)的定義,三角函數(shù)的化簡求值
專題:三角函數(shù)的求值
分析:(Ⅰ)直接利用三角函數(shù)的定義求sinα、cosα、tanα的值;
(Ⅱ)化簡表達式
1+sinα
1-sinα
-
1-sinα
1+sinα
,代入(Ⅰ)的值求解即可.
解答: 解:(Ⅰ)由三角函數(shù)的定義得r=
(-3)2+(-
3
)
2
=2
3

∴sinα=
y
r
=
-
3
2
3
=-
1
2
cosα=
x
r
=
-3
2
3
=-
3
2
,tanα=
y
x
=
-
3
-3
=
3
3

(Ⅱ)
1+sinα
1-sinα
-
1-sinα
1+sinα
=
(1+sinα)2
1-sin2α
-
(1-sinα)2
1-sin2α
=
1+sinα
-cosα
-
1-sinα
-cosα
=-2tanα=-
2
3
3
點評:本題考查三角函數(shù)的定義的應用,三角函數(shù)的化簡求值,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)α∈(0,
π
2
),函數(shù)f(x)的定義域為[0,1],且f(0)=0,f(1)=1,當x≥y時,有f(
x+y
2
)=f(x)sinα+(1-sinα)f(y)
(1)求f(
1
2
),f(
1
4
);
(2)求α的值
(3)求函數(shù)g(x)=sin(α-2x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圖1給出一個用“當型”循環(huán)語句編寫的程序:
(1)該程序的算法功能是求式子
 
的值.
(2)用“直到型”循環(huán)語句的形式寫出該程序,請完成圖2程序.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=a(x-
1
x
)-2lnx(a∈R).
(Ⅰ)若a=2,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若a>0,求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅲ)設(shè)函數(shù)g(x)=-
a
x
.若至少存在一個x0∈[1,e],使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在2014年清明節(jié)期間,高速公路車輛較多,某調(diào)查公司在服務區(qū)從七座以下小型汽車中,按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法,抽取40名駕駛員進行調(diào)查,將他們在某段高速公路上的車速(km/h)分成6段:(60,65),[65,70),[70,75),[80,85),[85,90)后得到如圖的頻率分布直方圖.
(1)該公司在調(diào)查取樣中,用到的是什么抽樣方法?
(2)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計值.
(3)若從車速在[60,70)的車輛中任取2輛,求抽出的2輛車中速度在[60,65)和[65,70)中各1輛的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z1=(a+1)+(a-1)i,z2=1+2ai,(a∈R,i是虛數(shù)單位).
(1)若復數(shù)z1-z2在復平面上對應點落在直線y=x上,求實數(shù)a的值;
(2)若復數(shù)z1是實系數(shù)一元二次方程x2+x+m=0的根,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(x+
m
x
n展開式的二項式系數(shù)之和為256.
(1)求n;
(2)若展開式中常數(shù)項為
35
8
,求m的值;
(3)若(x+m)n展開式中系數(shù)最大項只有第6項和第7項,求m的取值情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-lnx+1,試討論此函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
e1
=(2,1),
e2
=(1,3),
a
=(-1,2),若
a
1
e1
2
e2
,則實數(shù)對(λ1,λ2)為
 

查看答案和解析>>

同步練習冊答案