(本題滿分12分)如圖所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點(diǎn).

(1)求的長(zhǎng); (2)求cos< >的值;  (3)求證:A1B⊥C1M.
(1)| |=.
(2)cos<,>=.
(3)計(jì)算·=0,推出A1B⊥C1M。

試題分析:如圖,建立空間直角坐標(biāo)系O—xyz.   

(1)依題意得B(0,1,0)、N(1,0,1)
∴| |=.。。4分
(2)依題意得A1(1,0,2)、B(0,1,0)、C(0,0,0)、B1(0,1,2)
=(1,-1,2),=(0,1,2,),·=3,||=||=
∴cos<,>=.。。。。。。。8分
(3)證:依題意,得C1(0,0,2)、M(,2),=(-1,1,-2),={,0}.∴·=-+0=0,∴,∴A1B⊥C1M..。。。。。12分
點(diǎn)評(píng):典型題,立體幾何中平行、垂直關(guān)系的證明,距離及角的計(jì)算問題是高考中的必考題,通過建立適當(dāng)?shù)淖鴺?biāo)系,可使問題簡(jiǎn)化,向量的坐標(biāo)運(yùn)算要準(zhǔn)確。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面,的中點(diǎn),作于點(diǎn)
(1) 證明//平面
(2) 證明⊥平面;
(3) 求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知垂直平行四邊形所在平面,若,則平行四邊形一定是(填形狀)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,△是正三角形,都垂直于平面,且,的中點(diǎn).

(1)求證:∥平面
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體中,下面結(jié)論錯(cuò)誤的是( )
A.BD//平面B.
C.D.異面直線AD與所成角為450

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)
已知是四邊形所在平面外一點(diǎn),四邊形的菱形,側(cè)面
為正三角形,且平面平面.
(1)若邊的中點(diǎn),求證:平面.
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線⊥平面,直線m平面,有下列命題:
⊥m;  ②∥m;
∥m;  ④⊥m
其中正確命題的序號(hào)是               。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m、n是兩條不同的直線,、β是兩個(gè)不同的平面,則下列命題中正確的是
A.若m∥n,m∥,則n∥
B.若⊥β,m∥,則m⊥β
C.若⊥β,m⊥β,則m∥
D.若m⊥n,m⊥,n⊥β,則⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB是⊙O的直徑,C是圓周上不同于A、B的點(diǎn),PA垂直于⊙O所在的平面,AE⊥PB于E,AF⊥PC于F,因此,         ⊥平面PBC.(填圖中的一條直線)

查看答案和解析>>

同步練習(xí)冊(cè)答案