已知直線x+y+m=0與圓x2+y2=4相切,則實數(shù)m的值為( )
A.4
B.±4
C.2
D.±2
【答案】分析:利用圓心到直線的距離等于半徑,求出實數(shù)m的值.
解答:解:∵直線x+y+m=0與圓x2+y2=4相切,
∴圓心到直線的距離等于半徑,即 =2,
∴m=±2.故選D.
點評:本題考查點到直線的距離公式、直線和圓的位置關(guān)系的應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線x+y+m=0與圓x2+y2=2交于不同的兩點A、B,O是坐標原點,|
OA
+
OB
|≥|
AB
|,那么實數(shù)m的取值范圍是(  )
A、(-2,-
2
]∪[
2
,2)
B、(-2,2)
C、[-
2
,
2
]
D、(-2,
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y-m=0與直線x+(3-2m)y=0互相垂直,則實數(shù)m的值為
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•武昌區(qū)模擬)已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的離心率為
3
,右準線方程為x=
3
3

(1)求雙曲線C的方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A、B,與y軸交于點M,且
AM
=
1
3
MB
,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y+m=0過原點,則m=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0),其中一個焦點為F(2,0),且F到一條漸近線的距離為
3

(1)求雙曲線C的方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點A、B,且線段AB的中點在拋物線y2=-2x上,求m的值.

查看答案和解析>>

同步練習冊答案