如圖,在平面直角坐標(biāo)系xOy中,圓C:(x+1)2+y2=16,點(diǎn)F(1,0),E是圓C上的一個(gè)動(dòng)點(diǎn),EF的垂直平分線PQ與CE交于點(diǎn)B,與EF交于點(diǎn)D.

(1)求點(diǎn)B的軌跡方程;

(2)當(dāng)點(diǎn)D位于y軸的正半軸上時(shí),求直線PQ的方程;

(3)若G是圓C上的另一個(gè)動(dòng)點(diǎn),且滿足FG⊥FE,記線段EG的中點(diǎn)為M,試判斷線段OM的長(zhǎng)度是否為定值?若是,求出該定值;若不是,說明理由.

 

(1)=1(2)x-2y+4=0(3)

【解析】(1)連結(jié)BF,由已知BF=BE,所以BC+BF=BC+BE=CE=4,

所以點(diǎn)B的軌跡是以C、F為焦點(diǎn),長(zhǎng)軸為4的橢圓,所以B點(diǎn)的軌跡方程為=1.

(2)當(dāng)點(diǎn)D位于y軸的正半軸上時(shí),因?yàn)镈是線段EF的中點(diǎn),O為線段CF的中點(diǎn),所以CE∥OD,且CE=2OD,所以E、D的坐標(biāo)分別為(-1,4)和(0,2).

因?yàn)镻Q是線段EF的垂直平分線,所以直線PQ的方程為y=x+2,即直線PQ的方程為x-2y+4=0.

(3)設(shè)點(diǎn)E、G的坐標(biāo)分別為(x1,y1)和(x2,y2),則點(diǎn)M的坐標(biāo)為,因?yàn)辄c(diǎn)E、G均在圓C上,且FG⊥FE,所以(x1+1)2+=16,①,(x2+1)2+=16,②

(x1-1)(x2-1)+y1y2=0,③

所以=15-2x1,=15-2x2,x1x2+y1y2=x1+x2-1.所以MO2=[(x1+x2)2+(y1+y2)2]=·[()+()+2(x1x2+y1y2)]=[15-2x1+15-2x2+2(x1+x2-1)]=7,即M點(diǎn)到坐標(biāo)原點(diǎn)O的距離為定值,且定值為.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時(shí)練習(xí)卷(解析版) 題型:填空題

過點(diǎn)P(1,1)的直線,將圓形區(qū)域{(x,y)|x2+y2≤4}分為兩部分,使得這兩部分的面積之差最大,則該直線的方程為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題

已知橢圓C的方程為=1(a>b>0),雙曲線=1的兩條漸近線為l1、l2,過橢圓C的右焦點(diǎn)F作直線l,使l⊥l1.又l與l2交于P點(diǎn),設(shè)l與橢圓C的兩個(gè)交點(diǎn)由上至下依次為A、B(如圖).

(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時(shí),求橢圓C的方程;

(2)當(dāng)=λ,求λ的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第11課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點(diǎn)到點(diǎn)P(2,1)的距離為.不過原點(diǎn)O的直線l與C相交于A,B兩點(diǎn),且線段AB被直線OP平分.

(1)求橢圓C的方程;

(2)求△ABP面積取最大值時(shí)直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第10課時(shí)練習(xí)卷(解析版) 題型:解答題

已知橢圓=1(a>b>0)的離心率為,短軸的一個(gè)端點(diǎn)為M(0,1),直線l:y=kx-與橢圓相交于不同的兩點(diǎn)A、B.

(1)若AB=,求k的值;

(2)求證:不論k取何值,以AB為直徑的圓恒過點(diǎn)M.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第10課時(shí)練習(xí)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知橢圓=1的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F.設(shè)過點(diǎn)T(t,m)的直線TA、TB與橢圓分別交于點(diǎn)M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.

(1)設(shè)動(dòng)點(diǎn)P滿足PF2-PB2=4,求點(diǎn)P的軌跡;

(2)設(shè)x1=2,x2=,求點(diǎn)T的坐標(biāo);

(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān)).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第10課時(shí)練習(xí)卷(解析版) 題型:填空題

已知雙曲線方程是x2-=1,過定點(diǎn)P(2,1)作直線交雙曲線于P1、P2兩點(diǎn),并使P(2,1)為P1P2的中點(diǎn),則此直線方程是____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西工大附中高三上學(xué)期第四次適應(yīng)性訓(xùn)練理數(shù)學(xué)卷(解析版) 題型:選擇題

如圖所示,在中,,高,在內(nèi)作射線于點(diǎn),則的概率為( )

A. B. C. D.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西安鐵一中國際合作學(xué)校高三下第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)在區(qū)間是減函數(shù),則實(shí)數(shù)的取值范圍是 .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案