分析:由f(x)=x2-2kx+k=(x-k)2+k-k2,對稱軸x=k,①當k≤0時,函數(shù)f(x)在[0,1]上單調(diào)遞增,當x=0時,函數(shù)有最小值f(0);②當0<k<1時,函數(shù)f(x)在[0,k)單調(diào)遞減,在(k,1]單調(diào)遞增,當x=k時函數(shù)有最小值;③當k≥1時,函數(shù)f(x)在[0,1]上單調(diào)遞減,當x=1時,函數(shù)有最小值f(1,結(jié)合已知可求
解答:解:∵f(x)=x
2-2kx+k=(x-k)
2+k-k
2,對稱軸x=k
①當k≤0時,函數(shù)f(x)在[0,1]上單調(diào)遞增,當x=0時,函數(shù)有最小值f(0)=k=
,不符合題意
②當0<k<1時,函數(shù)f(x)在[0,k)單調(diào)遞減,在(k,1]單調(diào)遞增,當x=k時函數(shù)有最小值k-
k2=,解可得k=
,符合題意
③當k≥1時,函數(shù)f(x)在[0,1]上單調(diào)遞減,當x=1時,函數(shù)有最小值f(1)=1-k=
,解可得k=
不符合題意
綜上可得,k=
故答案為:
點評:本題主要考查了二次函數(shù)在閉區(qū)間上的最值的求解,解決此類問題的關鍵是確定函數(shù)在所給區(qū)間的單調(diào)性,而當單調(diào)性不確定時,需要分類討論