(13分)已知橢圓的長(zhǎng)軸長(zhǎng)為4,A,B,C是橢圓上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)頂點(diǎn),BC過橢圓的中心O,且,,如圖.

(Ⅰ)求橢圓的方程;

(Ⅱ)如果橢圓上的兩點(diǎn)P,Q使的平分線垂直于OA,是否總存在實(shí)數(shù),使得?請(qǐng)說明理由.

解析:(Ⅰ)由題意知:,

則橢圓方程為…………………………………………………………………2分  

由橢圓的對(duì)稱性知:

 又,即為等腰直角三角形,………………………4分

 由得:,代入橢圓方程得:,

 即橢圓方程為;………………………………………………………………6分

(Ⅱ)假設(shè)總存在實(shí)數(shù),使得,即,……………………………7分

 由,則,………………………………………8分

 若設(shè)CP:,則CQ:,

 由,………………9分

 由是方程的一個(gè)根,

 由韋達(dá)定理得:,以代k得,…10分

 故,故,       ………………13分

 即總存在實(shí)數(shù),使得        …………………………………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題13分)已知橢圓的方程是,點(diǎn)分別是橢圓的長(zhǎng)軸的左、右端點(diǎn),

左焦點(diǎn)坐標(biāo)為,且過點(diǎn)。

(Ⅰ)求橢圓的方程;

(Ⅱ)已知是橢圓的右焦點(diǎn),以為直徑的圓記為圓,試問:過點(diǎn)能否引圓的切線,若能,求出這條切線與軸及圓的弦所對(duì)的劣弧圍成的圖形的面積;若不能,說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆重慶市高二12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知橢圓的頂點(diǎn)與雙曲線的焦點(diǎn)重合,它們的離心率之和為,若橢圓的焦點(diǎn)在軸上,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東省高三第二次質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知橢圓的中心在原點(diǎn),焦點(diǎn),軸上,經(jīng)過點(diǎn),,且拋物線的焦點(diǎn)為.

(1) 求橢圓的方程;

(2) 垂直于的直線與橢圓交于,兩點(diǎn),當(dāng)以為直徑的圓軸相切時(shí),求直線的方程和圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市東城區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題共13分)已知橢圓的右焦點(diǎn)為為橢圓的上頂點(diǎn),為坐標(biāo)原點(diǎn),且△是等腰直角三角形.

(Ⅰ)求橢圓的方程;

(Ⅱ)是否存在直線交橢圓于兩點(diǎn), 且使點(diǎn)為△的垂心(垂心:三角形三邊高線的交點(diǎn))?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省五校高三第二次模擬測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分13分)已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)為半徑的圓與直線相切,分別是橢圓的左右兩個(gè)頂點(diǎn), 為橢圓上的動(dòng)點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若均不重合,設(shè)直線的斜率分別為,證明:為定值;

(Ⅲ)為過且垂直于軸的直線上的點(diǎn),若,求點(diǎn)的軌跡方程,并說明軌跡是什么曲線.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案