已知,點(diǎn)B是軸上的動(dòng)點(diǎn),過(guò)B作AB的垂線軸于點(diǎn)Q,若,.

(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線的相交弦長(zhǎng)為定值,若存在,求出定直線方程;若不存在,請(qǐng)說(shuō)明理由。

(1) y2=x (2)存在定直線x=

解析試題分析:(1)設(shè)B(0,t),Q(m,0),P(x,y),由射影定理并整理可得m=-4t,然后再利用已知條件和向量相等的坐標(biāo)表示的充要條件列出關(guān)于x,y的方程即可得到點(diǎn)P的軌跡方程.
(2)假設(shè)存在.根據(jù)已知幾何條件和勾股定理列出相交弦的表達(dá)式,再尋找a存在的條件即可.
試題解析:(1)設(shè)B(0,t),設(shè)Q(m,0),t2=|m|,m0, m=-4t2,
 Q(-4t2,0),設(shè)P(x,y),則=(x-,y),=(-4t2-,0),
2=(-,2 t), +=2。
(x-,y)+ (-4t2-,0)= (-,2 t),
 x=4t2,y="2" t, y2=x,此即點(diǎn)P的軌跡方程;       6分。
(2)由(1),點(diǎn)P的軌跡方程是y2=x;設(shè)P(y2,y),M (4,0) ,則以PM為直徑的圓的圓心即PM的中點(diǎn)T(,), 以PM為直徑的圓與直線x=a的相交弦長(zhǎng):
L=2
=2=2      10分
若a為常數(shù),則對(duì)于任意實(shí)數(shù)y,L為定值的條件是a-="0," 即a=時(shí),L=
存在定直線x=,以PM為直徑的圓與直線x=的相交弦長(zhǎng)為定值。
(2)存在定直線x=,以PM為直徑的圓與直線x=的相交弦長(zhǎng)為定值
考點(diǎn):1.射影定理;2.向量相等的坐標(biāo)表示的充要條件;3.勾股定理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)
(1)是否存在,使得點(diǎn)P在第一、三象限的角平分線上?
(2)是否存在,使得四邊形為平行四邊形?(若存在,則求出的值,若不存在,請(qǐng)說(shuō)明理由.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知A,B,C三點(diǎn)的坐標(biāo)分別為A(3,0),B(0,3),C(cosα,sinα),其中α∈(,).
(1)若||=||,求角α的值.
(2)若·=-1,求tan(α+)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,平行四邊形中,,,。

(1)用表示
(2)若,,,分別求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,圓與直線相切.
(1)設(shè)為圓上的一個(gè)動(dòng)點(diǎn),若點(diǎn),,求的最小值;
(2)過(guò)點(diǎn)作兩條相異直線分別與圓相交于,且直線和直線的傾斜角互補(bǔ),為坐標(biāo)原點(diǎn),試判斷直線是否平行?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面向量若函數(shù).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)將函數(shù)的圖象上的所有的點(diǎn)向左平移1個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若函數(shù)上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

觀察下列數(shù)的特點(diǎn),1,1,2,3,5,8,x,21,34,55,…中,其中x是( )

A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

數(shù)列的一個(gè)通項(xiàng)公式是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在△ABC中,點(diǎn)M是BC的中點(diǎn),點(diǎn)N在邊AC上,且AN=2NC,AM與BN相交于點(diǎn)P,求AP∶PM的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案