已知,點(diǎn)B是軸上的動(dòng)點(diǎn),過(guò)B作AB的垂線交軸于點(diǎn)Q,若,.
(1)求點(diǎn)P的軌跡方程;
(2)是否存在定直線,以PM為直徑的圓與直線的相交弦長(zhǎng)為定值,若存在,求出定直線方程;若不存在,請(qǐng)說(shuō)明理由。
(1) y2=x (2)存在定直線x=
解析試題分析:(1)設(shè)B(0,t),Q(m,0),P(x,y),由射影定理并整理可得m=-4t,然后再利用已知條件和向量相等的坐標(biāo)表示的充要條件列出關(guān)于x,y的方程即可得到點(diǎn)P的軌跡方程.
(2)假設(shè)存在.根據(jù)已知幾何條件和勾股定理列出相交弦的表達(dá)式,再尋找a存在的條件即可.
試題解析:(1)設(shè)B(0,t),設(shè)Q(m,0),t2=|m|,m0, m=-4t2,
Q(-4t2,0),設(shè)P(x,y),則=(x-,y),=(-4t2-,0),
2=(-,2 t), +=2。
(x-,y)+ (-4t2-,0)= (-,2 t),
x=4t2,y="2" t, y2=x,此即點(diǎn)P的軌跡方程; 6分。
(2)由(1),點(diǎn)P的軌跡方程是y2=x;設(shè)P(y2,y),M (4,0) ,則以PM為直徑的圓的圓心即PM的中點(diǎn)T(,), 以PM為直徑的圓與直線x=a的相交弦長(zhǎng):
L=2
=2=2 10分
若a為常數(shù),則對(duì)于任意實(shí)數(shù)y,L為定值的條件是a-="0," 即a=時(shí),L=
存在定直線x=,以PM為直徑的圓與直線x=的相交弦長(zhǎng)為定值。
(2)存在定直線x=,以PM為直徑的圓與直線x=的相交弦長(zhǎng)為定值。
考點(diǎn):1.射影定理;2.向量相等的坐標(biāo)表示的充要條件;3.勾股定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)
(1)是否存在,使得點(diǎn)P在第一、三象限的角平分線上?
(2)是否存在,使得四邊形為平行四邊形?(若存在,則求出的值,若不存在,請(qǐng)說(shuō)明理由.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知A,B,C三點(diǎn)的坐標(biāo)分別為A(3,0),B(0,3),C(cosα,sinα),其中α∈(,).
(1)若||=||,求角α的值.
(2)若·=-1,求tan(α+)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,圓與直線相切.
(1)設(shè)為圓上的一個(gè)動(dòng)點(diǎn),若點(diǎn),,求的最小值;
(2)過(guò)點(diǎn)作兩條相異直線分別與圓相交于,且直線和直線的傾斜角互補(bǔ),為坐標(biāo)原點(diǎn),試判斷直線和是否平行?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平面向量若函數(shù).
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)將函數(shù)的圖象上的所有的點(diǎn)向左平移1個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若函數(shù)在上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
觀察下列數(shù)的特點(diǎn),1,1,2,3,5,8,x,21,34,55,…中,其中x是( )
A.12 | B.13 | C.14 | D.15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,在△ABC中,點(diǎn)M是BC的中點(diǎn),點(diǎn)N在邊AC上,且AN=2NC,AM與BN相交于點(diǎn)P,求AP∶PM的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com