π
2
0
(2x+sinx)dx
=______.
π
2
0
(2x+sinx)dx
=(x2-cosx)
|
π
2
0
=
1
4
π2-(-1)=
1
4
π2+1
故答案為:
1
4
π2+1.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sinx的圖象上所有的點(diǎn)向右平行移動(dòng)
π
10
個(gè)單位長(zhǎng)度,再把所得各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),所得圖象的函數(shù)解析式是( 。
A、y=sin(2x-
π
10
B、y=sin(2x-
π
5
C、y=sin(
1
2
x-
π
10
D、y=sin(
1
2
x-
π
20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sinx的圖象上所有的點(diǎn)橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),再把所得各點(diǎn)向右平行移動(dòng)
π
10
個(gè)單位長(zhǎng)度,所得圖象的函數(shù)解析式是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

π
2
0
(2x+sinx)dx
=
1
4
π2+1
1
4
π2+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共20分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,PA切⊙O于點(diǎn)A,D為PA的中點(diǎn),過點(diǎn)D引割線交⊙O于B、C兩點(diǎn).求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
設(shè)M=
.
10
02
.
,N=
.
1
2
0
01
.
,試求曲線y=sinx在矩陣MN變換下的曲線方程.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=
2
cos(θ+
π
4
)
,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被圓C所截得的弦長(zhǎng).
D.選修4-5:不等式選講
解不等式:|2x+1|-|x-4|<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案