【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.

I求張同學(xué)至少取到1道乙類題的概率;

II已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對(duì)甲類題的概率都是,答對(duì)每道乙類題的概率都是且各題答對(duì)與否相互獨(dú)立.用表示張同學(xué)答對(duì)題的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.

【答案】I

II

X

0

1

2

3

P

【解析】I解法一 解法二

IIX所有可能取值為0,1,2,3.

,,

,

所求的分布列為

X

0

1

2

3

P

第一小問(wèn)可以從兩個(gè)方面去思考,一是間接法,就是張同學(xué)1道乙類題都沒(méi)有取到的取法是多少?二是直接法,就是取一道乙類題和兩道甲類體;兩道乙類題和一道甲類體;三道乙類題。三種情況加起來(lái)就是共有多少種取法。第二問(wèn)一是思考隨機(jī)變量的所有可能取值,二是算出對(duì)應(yīng)的概率,其中X=1和X=2要注意有兩種情形。最后利用數(shù)學(xué)期望的公式求解。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期;

(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應(yīng)的x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù) 的圖象向左平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列中,,.若記表示不超過(guò)的最大整數(shù),(如).令,則數(shù)列的前2000項(xiàng)和為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點(diǎn).

(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線l與圓O的另一個(gè)交點(diǎn)為D,且點(diǎn)Q滿足 .記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電影院共有個(gè)座位,某天,這家電影院上、下午各演一場(chǎng)電影.看電影的是甲、乙、丙三所中學(xué)的學(xué)生,三所學(xué)校的觀影人數(shù)分別是985人,1010人,2019人(同一所學(xué)校的學(xué)生既可看上午場(chǎng),又可看下午場(chǎng),但每人只能看一場(chǎng)).已知無(wú)論如何排座位,這天觀影時(shí)總存在這樣的一個(gè)座位,上、下午在這個(gè)座位上坐的是同一所學(xué)校的學(xué)生,那么的可能取值有__________個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車間共有12名工人,隨機(jī)抽取6名,他們某日加工零件個(gè)數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個(gè)位數(shù).

(1)根據(jù)莖葉圖計(jì)算樣本均值;
(2)日加工零件個(gè)數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是()

A. 銳角是第一象限的角,所以第一象限的角都是銳角;

B. 如果向量,則;

C. 中,記,則向量可以作為平面ABC內(nèi)的一組基底;

D. ,都是單位向量,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性;

(2)若有兩個(gè)極值點(diǎn),且,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案