年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:上海市崇明中學(xué)2011-2012學(xué)年高二上學(xué)期期中考試數(shù)學(xué)試題 題型:022
直線y=3的一個(gè)單位法向量是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省衡水中學(xué)2012屆高三上學(xué)期五調(diào)考試數(shù)學(xué)理科試題 題型:044
設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)將函數(shù)y=f(x)圖象向右平移一個(gè)單位即可得到函數(shù)y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省揭陽第一中學(xué)2012屆高三第一次階段考試數(shù)學(xué)文科試題 題型:044
設(shè)函數(shù)
f(x)=a2x2(a>0),g(x)=blnx.(1)
將函數(shù)y=f(x)圖象向右平移一個(gè)單位即可得到函數(shù)y=φ(x)的圖象,試寫出y=φ(x)的解析式及值域;(2)
關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;(3)
對于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè),b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)試求m的值,并分別寫出x′和y′用x、y表示的關(guān)系式;
(2)將(x,y)作為點(diǎn)P的坐標(biāo),(x′,y′)作為點(diǎn)Q的坐標(biāo),上述關(guān)系式可以看作是坐標(biāo)平面上點(diǎn)的一個(gè)變換:它將平面上的點(diǎn)P變到這一平面上的點(diǎn)Q.
當(dāng)點(diǎn)P在直線y=x+1上移動時(shí),試求點(diǎn)P經(jīng)該變換后得到的點(diǎn)Q的軌跡方程.
(3)是否存在這樣的直線:它上面的任一點(diǎn)經(jīng)上述變換后得到的點(diǎn)仍在c 該直線上?若存在,試求出所有這些直線;若不存在,則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com