已知點(diǎn)F1(-4,0)、F2(4,0),曲線上的動(dòng)點(diǎn)P到F1、F2的距離之差為6,則曲線的方程為_____________________.

-=1(x≥3)


解析:

∵2c=8,

又∵|PF1|-|PF2|=6(|PF1|>|PF2|),

∴a=3,b=.

∴所求曲線的方程為-=1(x≥3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F1(0,-1)和拋物線C1:x2=2py的焦點(diǎn)F關(guān)于x軸對(duì)稱,點(diǎn)M是以點(diǎn)F為圓心,4為半徑的⊙F上任意一點(diǎn),線段MF1的垂直平分線與線段MF交于點(diǎn)P,設(shè)點(diǎn)P的軌跡為曲線C2,
(1)求拋物線C1和曲線C2的方程;
(2)是否存在直線l,使得直線l分別與拋物線C1及曲線C2均只有一個(gè)公共點(diǎn),若存在,求出所有這樣的直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F1(-4,0)、F2(4,0),曲線上的動(dòng)點(diǎn)P到F1、F2的距離之差為6,則曲線的方程為_____________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省廣州市高考數(shù)學(xué)查漏補(bǔ)缺試卷(理科)(解析版) 題型:解答題

已知點(diǎn)F1(0,-1)和拋物線C1:x2=2py的焦點(diǎn)F關(guān)于x軸對(duì)稱,點(diǎn)M是以點(diǎn)F為圓心,4為半徑的⊙F上任意一點(diǎn),線段MF1的垂直平分線與線段MF交于點(diǎn)P,設(shè)點(diǎn)P的軌跡為曲線C2,
(1)求拋物線C1和曲線C2的方程;
(2)是否存在直線l,使得直線l分別與拋物線C1及曲線C2均只有一個(gè)公共點(diǎn),若存在,求出所有這樣的直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F1(-4,0)和F2(4,0),曲線上的動(dòng)點(diǎn)P到F1、F2距離之差為6,則曲線方程為(    )

A.=1                                      B.=1(y>0)

C.=1或=1                 D.=1(x>0)

查看答案和解析>>

同步練習(xí)冊(cè)答案