把1+(1+x)+(1+x)2+…+(1+x)n展開成關(guān)于x的多項(xiàng)式,其各項(xiàng)系數(shù)和為an,則an=( 。
A、2n+1-1
B、2n-1
C、2n+2-1
D、與x有關(guān)
考點(diǎn):二項(xiàng)式定理
專題:二項(xiàng)式定理
分析:利用賦值法,通過(guò)x=1直接求出展開式各項(xiàng)系數(shù)和為an的值.
解答: 解:在1+(1+x)+(1+x)2+…+(1+x)n中,令x=1,可得把它展開成關(guān)于x的多項(xiàng)式時(shí),
其各項(xiàng)系數(shù)和為an=1+2+22+23+…+2n=
1×(1-2n+1)
1-2
=2n+1-1,
故選:A.
點(diǎn)評(píng):本題考查二項(xiàng)式定理的應(yīng)用,賦值法以及數(shù)列求和的基本方法,考查計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x+
3
y=2傾斜角的大小等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={a,b,c},集合N滿足N⊆M,則集合N的個(gè)數(shù)是( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是( 。
A、“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B、“向量
a
,
b
,
c
,若
a
b
=
a
c
,則
b
=
c
”是真命題
C、“?x∈R,x2+1>0”的否定是“?x0∈R,x02+1<0”
D、“若a=
π
6
,則sina=
1
2
”的否命題是“若a
π
6
,則sina
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
log2(x2-2x-14)
的定義域?yàn)榧螦,集合B={x|-1≤x<7},C={x|x<a}.
(Ⅰ)求集合A及A∩(∁RB);
(Ⅱ)若C⊆A,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

令f(x)=
1
x+1
,則:f(1)+f(2)+…+f(2011)+f(
1
2011
)+f(
1
2010
)+…+f(
1
2
)+f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=log 
1
2
(x2+3x-4)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|2x2-3x-2<0},集合B={x|
2x+1
x-1
≥1},則A∩B=(  )
A、(-
1
2
,2)
B、(1,2)
C、[1,2)
D、(-
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐S-ABC中,E為棱SC的中點(diǎn),若AC=
3
AB且SA=SB=SC=AB=BC,則異面直線AC與BE所成的角為(  )  
A、30°B、45°
C、60°D、90°

查看答案和解析>>

同步練習(xí)冊(cè)答案