已知等腰梯形PDCB中(如圖1),PB=3,DC=1,PB=BC=,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使面PAD⊥面ABCD(如圖2)
(I)證明:平面PAD⊥PCD;
(II)試在棱PB上確定一點M,使截面AMC把幾何體分成的兩部分VPDCMA:VMACB=2:1;
(III)在M滿足(Ⅱ)的情況下,判斷直線AM是否平行面PCD.

【答案】分析:(I)由已知中CD⊥AD及面PAD⊥面ABCD,我們根據(jù)面面垂直的性質(zhì)定理得到CD⊥平面PAD,再由面面垂直的判定定理得到平面PAD⊥PCD;
(II)根據(jù)(I)的結(jié)論,平面PAB⊥平面ABCD,在PB上取一點M,作MN⊥AB,則MN⊥平面ABCD,利用體積公式,分別計算VPDCMA,VMACB,再根據(jù)VPDCMA:VMACB=2:1,即可求出滿足條件的M為PB的中點;
(III)以A為原點,AD、AB、AP所在直線為x,y,z軸,建立如如圖所示的空間直角坐標系,求出相關頂點的坐標,進而求出直線AM的方向向量及平面PCD的法向量,判定兩個向量是否垂直,即可判斷直線AM是否平行面PCD.
解答:解:(I)證明:依題意知:CD⊥AD.又∵面PAD⊥面ABCD∴DC⊥平面PAD.(2分)
∴平面PAD⊥PCD;
(II)由(I)知PA⊥平面ABCD
∴平面PAB⊥平面ABCD.(4分)
在PB上取一點M,作MN⊥AB,則MN⊥平面ABCD,
設MN=h
(6分)
要使
即M為PB的中點;
(III)以A為原點,AD、AB、AP所在直線為x,y,z軸,
建立如如圖所示的空間直角坐標系
則A(0,0,0),B(0,2,0),
C(1,1,0),D(1,0,0),
P(0,0,1),M(0,1,
由(I)知平面PAD⊥平面PCD,作AQ⊥PD,則的法向量.(10分)
又∵△PAD為等腰Rt△∴
因為
所以AM與平面PCD不平行.(13分)
點評:本題考查的知識點是平面與平面垂直的判定,直線與平面平行的判定,熟練掌握空間直線、平面間平行與垂直的判定定理、性質(zhì)定理、定義及幾何特征是解答此類問題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等腰梯形PDCB中(如圖1),PB=3,DC=1,PB=BC=2a=|
QP
|+|
QP′
|=
(
5
2
-2)
2
+(
3
2
)
2
+
(
5
2
+2)
2
+(
3
2
)
2
=2
10
,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使面PAD⊥面ABCD(如圖2)
(I)證明:平面PAD⊥PCD;
(II)試在棱PB上確定一點M,使截面AMC把幾何體分成的兩部分VPDCMA:VMACB=2:1;
(III)在M滿足(Ⅱ)的情況下,判斷直線AM是否平行面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知等腰梯形PDCB中(如圖1),PB=3,DC=1,PD=BC=
2
,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使面PAD⊥面ABCD(如圖2).
(1)證明:平面PAD⊥平面PCD;
(2)試在棱PB上確定一點M,使截面AMC把幾何體分成的兩部分VPDCMA:VMABC=2:1.
(3)在M滿足(Ⅱ)的情況下,判斷直線AM是否平行面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等腰梯形PDCB中,PB=3,DC=1,PD=
2
,A為PB邊上一點,且DA⊥PB,將△PAD沿AD折起,使PA⊥AB.
(1)求證:CD∥面PAB;
(2)求證:CB⊥面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•鹽城一模)已知等腰梯形PDCB中,PB=3,DC=1,PD=BC=
2
,A為PB邊上一點,且PA=1,將△PAD沿AD折起,使面PAD⊥面ABCD.
(Ⅰ)證明:平面PAD⊥平面PCD;
(Ⅱ)試在棱PB上確定一點M,使截面AMC把幾何體分成的兩部分VP-DCMA:VM-ACB=2:1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

 

(09年萊西一中模擬理)(12分)

已知等腰梯形PDCB中(如圖1),PB=3,DC=1,PD=BC=,APB邊上一點,且PA=1,將△PAD沿AD折起,使面

PADABCD(如圖2)。

   (Ⅰ)證明:平面PAD⊥PCD;

   (Ⅱ)試在棱PB上確定一點M,使截面AMC把幾何體分成的兩部分;

   (Ⅲ)在M滿足(Ⅱ)的情況下,判斷直線AM是否平行面PCD.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習冊答案