若矩陣
a1a2a3a4
b1b2b3b4
滿足下列條件:①每行中的四個(gè)數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個(gè)數(shù)為( 。
A.24B.48C.144D.288
按以下步驟進(jìn)行排列
①?gòu)募蟵1,2,3,4}中選取2個(gè)數(shù),總共有C42=6種方法;
②將選取的兩個(gè)數(shù)插在第一列、第二列、第三列或第四列的2個(gè)位置,
因?yàn)樯舷聦?duì)應(yīng)的數(shù)字相同,所以總共有A42=12種方法;
③將剩余的兩個(gè)數(shù)插在余下的2個(gè)位置,共2種方法
綜上,可得滿足條件的不同排列共有C42A42×2=144個(gè)
因此,滿足條件的不同矩陣的個(gè)數(shù)為144個(gè)
故選:C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
ab
cd
,若矩陣A屬于特征值3的一個(gè)特征向量為α1=
1
1
,屬于特征值-1的一個(gè)特征向量為α2=
1
-1
,求矩陣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
21
-21
,B=
1-2
01

(1)計(jì)算AB;
(2)若矩陣B把直線l:x+y+2=0變?yōu)橹本l',求直線l'的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若矩陣M有特征向量
e1
=
1
0
,
e2
=
0
1
,且它們所對(duì)應(yīng)的一個(gè)特征值分別為2,-1.
(1)求矩陣M及其逆矩陣N
(2)求N100
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇二模)選做題
A.選修4-1:幾何證明選講
如圖,自⊙O外一點(diǎn)P作⊙O的切線PC和割線PBA,點(diǎn)C為切點(diǎn),割線PBA交⊙O于A,B兩點(diǎn),點(diǎn)O在AB上.作CD⊥AB,垂足為點(diǎn)D.
求證:
PC
PA
=
BD
DC

B.選修4-2:矩陣與變換
設(shè)a,b∈R,若矩陣A=
a0
-1b
把直線l:y=2x-4變換為直線l′:y=x-12,求a,b的值.
C.選修4-4:坐標(biāo)系與參數(shù)方程
求橢圓C:
x2
16
+
y2
9
=1上的點(diǎn)P到直線l:3x+4y+18=0的距離的最小值.
D.選修4-5不等式選講
已知非負(fù)實(shí)數(shù)x,y,z滿足x2+y2+z2+x+2y+3z=
13
4
,求x+y+z的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個(gè)特征向量為
α1
=
1
1
,屬于特征值1的一個(gè)特征向量
α2
=
3
-2

(Ⅰ)求矩陣A的逆矩陣;
(Ⅱ)計(jì)算A3
-1
4
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案