函數(shù)y=sin4x+cos2x的最小正周期為(  )
A、
π
4
B、
π
2
C、π
D、2π
分析:用二倍角公式化簡原式,變成y═
1
8
cos4x+
7
8
,再利用余弦函數(shù)關(guān)于周期性的性質(zhì)可得答案.
解答:解析:y=sin4x+cos2x
=(
1-cos2x
2
2+
1+cos2x
2

=
cos22x+3
4
=
1+cos4x
2
4
+
3
4

=
1
8
cos4x+
7
8

故最小正周期T=
4
=
π
2

故選B
點評:本題主要考查三角函數(shù)的周期性的問題.轉(zhuǎn)化成y=Asin(ωx+φ)的形式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π.
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z}.
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點.
④把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象
⑤函數(shù)y=sin(x-
π
2
)在(0,π)上是減函數(shù).
其中真命題的序號是
 
(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π.
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z
|.
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點.
④把函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象
⑤函數(shù)y=sin(x-
π
2
)
在(0,π)上是減函數(shù)
其中真命題的序號是
 
((寫出所有真命題的編號))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面有五個命題:
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z};
③在同一坐標(biāo)系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有三個公共點;
④若cos2α=
1
2
,則α=2kπ±
π
6
(k∈Z);
⑤函數(shù)y=sin(x-
π
2
)在(0,π)上是減函數(shù).
其中真命題的序號是
(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)給出以下4個命題:其中真命題的個數(shù)是( 。
①函數(shù)y=sin4x-cos4x的最小正周期是π;
②終邊在y軸上的角的集合是{α|α=
2
,k∈Z}
;
③把函數(shù)y=3sin(2x+
π
3
)
的圖象向右平移
π
6
個單位得到函數(shù)y=3sin2x的圖象;
④函數(shù)y=sin(x-
π
2
)
在區(qū)間[0,π]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有4個命題:①函數(shù)y=sin4x-cos4x的最小正周期是π;
②在同一坐標(biāo)系中,函數(shù)y=sinx與y=x的圖象有三個公共點;
③把函數(shù)y=3sin(2x+
π
6
)
的圖象向右平移
π
6
得到y(tǒng)=3sin2x的圖象;
④函數(shù)y=sin(x-
π
2
)
在[0,π]上是減函數(shù).
其中真命題的序號是
(填上所有真命題的序號).

查看答案和解析>>

同步練習(xí)冊答案