【題目】在平面直角坐標系xOy中,已知圓 和圓 ,
(1)若直線l1過點A(2,0),且與圓C1相切,求直線l1的方程;
(2)若直線l2過點B(4,0),且被圓C2截得的弦長為 ,求直線l2的方程.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=ax上一點M(4,b)到焦點的距離為6.
(1)求拋物線的方程;
(2)若此拋物線與直線y=kx﹣2交于不同的兩點A、B,且AB中點的橫坐標為2,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個頂點坐標分別為A(﹣1,1),B(7,﹣1),C(﹣2,5),AB邊上的中線所在直線為l.
(1)求直線l的方程;
(2)若點A關于直線l的對稱點為D,求△BCD的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】盒子中有5個大小形狀完全相同的小球,其中黑色小球有3個,標號分別為1,2,3,白色小球有2個,標號分別為1,2.
(1)若從盒中任取兩個小球,求取出的小球顏色相同且標號之和小于或等于4的概率;
(2)若盒子里再放入一個標號為4的紅色小球,從中任取兩個小球,求取出的兩個小球顏色不同且標號之和大于3的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y= sin(ωx+ )(ω>0).
(1)若ω= ,求函數(shù)的單調增區(qū)間和對稱中心;
(2)函數(shù)的圖象上有如圖所示的A,B,C三點,且滿足AB⊥BC. ①求ω的值;
②求函數(shù)在x∈[0,2)上的最大值,并求此時x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐S﹣ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC且分別交AC、SC于D、E,又SA=AB,SB=BC,
(1)求證:BD⊥平面SAC;
(2)求二面角E﹣BD﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓x2+y2﹣2x+4y﹣20=0截直線5x﹣12y+c=0的弦長為8,
(1)求c的值;
(2)求直線y=x﹣11上的點到圓上點的最短距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】樣本(x1 , x2…,xn)的平均數(shù)為x,樣本(y1 , y2 , …,ym)的平均數(shù)為 ( ≠ ).若樣本(x1 , x2…,xn , y1 , y2 , …,ym)的平均數(shù) =α +(1﹣α) ,其中0<α< ,則n,m的大小關系為( )
A.n<m
B.n>m
C.n=m
D.不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為增強市民的環(huán)境保護意識,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第1組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45],得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參廣場的宣傳活動,應從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該縣決定在這6名志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com