在平面直角坐標系中,橫坐標與縱坐標都在集合A={0,1,2,3,4,5}內(nèi)任取一個值,則此點正好在直線y=x+1上的概率為
5
36
5
36
分析:根據(jù)題意,列舉得到的點的全部情況,可得其情況數(shù)目,再分析可得這個點在直線y=x+1上的情況,進而由等可能事件的概率公式,計算可得答案.
解答:解:根據(jù)題意,得到點的情況有(0,0)、(0,1)、(0,2)、(0,3)、(0,4)、(0,5)、
(1,0)、(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、
(2,0)、(2,1)、(2,2)、(2,3)、(2,4)、(2,5)、
(3,0)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、
(4,0)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、
(5,0)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5),共36種;
點在y=x+1上的情況有(0,1)、(1,2)、(2,3)、(3,4)、(4,5),共5種,
則點正好在直線y=x+1上的概率為
5
36

故答案為
5
36
點評:本題考查等可能事件的概率計算,要正確列舉該點的全部情況,注意點的縱橫坐標可以相等.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,以O(shè)為極點,x正半軸為極軸建立極坐標系,曲線C的極坐標方程為:pcos(θ-
π3
)=1
,M,N分別為曲線C與x軸,y軸的交點,則MN的中點P在平面直角坐標系中的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)設(shè)α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,如果x與y都是整數(shù),就稱點(x,y)為整點,下列命題中正確的是
 
(寫出所有正確命題的編號).
①存在這樣的直線,既不與坐標軸平行又不經(jīng)過任何整點
②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點
③直線l經(jīng)過無窮多個整點,當且僅當l經(jīng)過兩個不同的整點
④直線y=kx+b經(jīng)過無窮多個整點的充分必要條件是:k與b都是有理數(shù)
⑤存在恰經(jīng)過一個整點的直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,下列函數(shù)圖象關(guān)于原點對稱的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以點(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點,若AC與BD的交點F恰好為拋物線的焦點,則r=
 

查看答案和解析>>

同步練習冊答案