已知f(x)是R上的奇函數(shù),且f(
3
2
+x)=f(
3
2
-x),當(dāng)0≤x≤3時(shí),f(x)=x+sinx,則f(2010)=
 
分析:由已知f(x)是R上的奇函數(shù),且f(
3
2
+x)=f(
3
2
-x),我們易得f(x)是周期函數(shù),且周期為6,則由當(dāng)0≤x≤3時(shí),f(x)=x+sinx,我們不難得到一個(gè)周期內(nèi)函數(shù)f(x)的解析式,然后根據(jù)周期性解決問題.
解答:解:∵f(x)是R上的奇函數(shù)
且當(dāng)0≤x≤3時(shí),f(x)=x+sinx
∴當(dāng)-3≤x≤3時(shí),f(x)=x+sinx
又∵f(
3
2
+x)=f(
3
2
-x),
故函數(shù)f(x)是T=6的周期函數(shù)
則f(2010)=f(0)=0
故答案為:0
點(diǎn)評(píng):若函數(shù)f(x)的圖象關(guān)于(a,0)點(diǎn)對(duì)稱,又關(guān)于直線x=b對(duì)稱,則函數(shù)一定為周期函數(shù)且T=4|a-b|.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、已知f(x)是R上的偶函數(shù),f(2)=-1,若f(x)的圖象向右平移1個(gè)單位長(zhǎng)度,得到一個(gè)奇函數(shù)的圖象,則f(1)+f(2)+f(3)+…+f(2010)=
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=2x,又a是g(x)=ln(x+1)-
2x
的零點(diǎn),比較f(a),f(-2),f(1.5)的大小,用小于符號(hào)連接為
f(1.5)<f(a)<f(-2).
f(1.5)<f(a)<f(-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=
x

(1)求當(dāng)x<0時(shí),f(x)的表達(dá)式
(2)判斷f(x)在區(qū)間(0,+∞)的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是R上的偶函數(shù),g(x)是R上的奇函數(shù),且g(x)=f(x-1),若g(-1)=2,則f(2008)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個(gè)命題:
①命題“已知f(x)是R上的減函數(shù),若a+b≥0,則f(a)+f(b)≤f(-a)+f(-b)”的逆否命題為真命題;
②若p或q為真命題,則p、q均為真命題;
③若命題p:?x∈R,x2-x+1<0,則?p:?x∈R,x2-x+1≥0;
④“sinx=
1
2
”是“x=
π
6
”的充分不必要條件.
其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案