以F1、F2為焦點(diǎn)的橢圓
x2
a2
+
y2
b2
=1(a>b>0)上頂點(diǎn)P,當(dāng)∠F1PF2=120°時(shí),則此橢圓離心率e的大小為
3
2
3
2
分析:利用焦點(diǎn)三角形,確定b,c的關(guān)系,進(jìn)而可得a,c的關(guān)系,從而可得橢圓的離心率.
解答:解:∵以F1、F2為焦點(diǎn)的橢圓
x2
a2
+
y2
b2
=1(a>b>0)上頂點(diǎn)P,∠F1PF2=120°
tan60°=
c
b

c=
3
b

∴c2=3(a2-c2
c
a
=
3
2

∴e=
3
2

故答案為:
3
2
點(diǎn)評:本題考查橢圓的離心率,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P是以F1,F(xiàn)2為焦點(diǎn)的橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的一點(diǎn),若PF1⊥PF2,tan∠PF1F2=
1
2
,則此橢圓的離心率為( 。
A、
1
2
B、
2
3
C、
1
3
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P在以F1、F2為焦點(diǎn)的雙曲線
x2
3
-
y2
9
=1
上運(yùn)動,則△PF1F2的重心G的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對稱,直線m垂直于x軸,垂足為T,與拋物線交于不同的兩點(diǎn)P、Q且
F1P
F2Q
=-5

(1)求點(diǎn)T的橫坐標(biāo)x0
(2)若以F1,F(xiàn)2為焦點(diǎn)的橢圓C過點(diǎn)(1,
2
2
)

①求橢圓C的標(biāo)準(zhǔn)方程;
②過點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),求|
TA
+
TB
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博二模)已知拋物線y2=4x的焦點(diǎn)為F2,點(diǎn)F1與F2關(guān)于坐標(biāo)原點(diǎn)對稱,直線m垂直于x軸(垂足為T),與拋物線交于不同的兩點(diǎn)P、Q且
F1P
F2Q
=-5

(I)求點(diǎn)T的橫坐標(biāo)x0;
(II)若以F1,F(xiàn)2為焦點(diǎn)的橢圓C過點(diǎn)(1,
2
2
)

①求橢圓C的標(biāo)準(zhǔn)方程;
②過點(diǎn)F2作直線l與橢圓C交于A,B兩點(diǎn),設(shè)
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案