已知數(shù)列{an}的遞推公式為
(1)令bn=an-n,求證:數(shù)列{bn}為等比數(shù)列;
(2)求數(shù)列{an}的前 n項(xiàng)和.
【答案】分析:(1)利用數(shù)列遞推式,可得,利用等比數(shù)列的定義,可得結(jié)論;
(2)確定數(shù)列的通項(xiàng),利用分組求和,可求數(shù)列{an}的前n項(xiàng)和.
解答:(1)證明:由題意,bn=an-n=3an-1-2n+3-n=3an-1-3n+3=3(an-1-(n-1))=3bn-1,n≥2
又b1=a1-1=1,所以bn≠0(n∈N*),
所以,數(shù)列{bn}是以1為首項(xiàng)3為公比的等比數(shù)列.(6分)
(2)解:由(1)知,,an=bn+n(8分)
所以數(shù)列{an}的前 n項(xiàng)和Sn=(b1+b2+…+bn)+(1+2+…+n)=(14分)
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查等比數(shù)列的判定與通項(xiàng),考查分組求和,考查學(xué)生的計(jì)算能力,確定數(shù)列的通項(xiàng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的遞推公式an=
n,n為奇數(shù)
a
n
2
,n為偶數(shù)
(n∈N*)
,則a24+a25=
28
28

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的遞推公式為
a1=2
an+1=3an+1
,bn=an+
1
2
(n∈N*),
(1)求證:數(shù)列{bn}為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•靜安區(qū)一模)已知數(shù)列{an}的遞推公式為
an=3an-1-2n+3,(n≥2,n∈N*)
a1=2

(1)令bn=an-n,求證:數(shù)列{bn}為等比數(shù)列;
(2)求數(shù)列{an}的前 n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的遞推公式an=
n,n為奇數(shù)
a
n
2
,n為偶數(shù)
(n∈N*)
,則a24+a25=
 
;數(shù)列{an}中第8個(gè)5是該數(shù)列的第
 
  項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的遞推關(guān)系式an+1=an+d(d為常數(shù)),且a4=4d,則此數(shù)列前5項(xiàng)的和為_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案