(2007•寶山區(qū)一模)已知函數(shù)f(x)=1-2-x(x∈R).
(1)求y=f(x)的反函數(shù)y=f-1(x);
(2)求不等式2log2(x+1)+f-1(x)≥0的解集.
分析:(1)該題考查指數(shù)式和對數(shù)式的互化及反函數(shù)的求法,利用反函數(shù)的定義結(jié)合指對互化即可獲得.
(2)將反函數(shù)的解析式代入不等式,然后根據(jù)對數(shù)運算法則進行化簡變形,求出不等式的解集,注意定義域優(yōu)先的原則.
解答:解:(1)解:由y=1-2-x得-x=log2(1-y),即:x=-log2(1-y),
又∵原函數(shù)的值域是{y|y<1},
∴函數(shù)y=1-2-x(x∈R)的反函數(shù)是y=-log2(1-x),(x<-1).
∴y=f-1(x)=-log2(1-x),(x<-1).…(6分)
(2)由2log2(x+1)-log2(1-x)≥0得(x+1)2≥1-x,(10分)
解得x≥0或x≤-3              …(12分)
又因為定義域為{x|-1<x<1},所以不等式的解集是{x|0≤x<1}(14分)
點評:本題主要考查了反函數(shù)的求解,以及對數(shù)不等式的解法,解題的關鍵就是定義域的求解,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2007•寶山區(qū)一模)已知A是△ABC的內(nèi)角,則“sinA=
3
2
”是“tgA=
3
”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•寶山區(qū)一模)若實數(shù)a滿足a2-2a-3<0,則
lim
n→∞
3n+1-an
3n+an
=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•寶山區(qū)一模)已知動圓過定點P(1,0),且與定直線l:x=-1相切.
(1)求動圓圓心的軌跡M的方程;
(2)設過點P,且傾斜角為120°的直線與曲線M相交于A,B兩點,A,B在直線l上的射影是A1,B1
①求梯形AA1B1B的面積;
②若點C是線段A1B1上的動點,當△ABC為直角三角形時,求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•寶山區(qū)一模)已知△ABC的面積S=4,b=2,c=6,則sinA=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•寶山區(qū)一模)已知集合S={x|
x2-x
<0,x∈R}
T={x||2x-1|≤3},x∈R},則S∪T=
R
R

查看答案和解析>>

同步練習冊答案