(2013•臨沂一模)某中學(xué)高三年級(jí)從甲、乙兩個(gè)班級(jí)各選出7名學(xué)生參加數(shù)學(xué)競(jìng)賽,他們?nèi)〉玫某煽?jī)(滿分l00分)的莖葉圖如圖,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績(jī)的中位數(shù)是83.則x+y的值為( 。
分析:利用平均數(shù)求出x的值,中位數(shù)求出y的值,解答即可.
解答:解:由莖葉圖可知甲班學(xué)生的總分為70×2+80×3+90×2+(8+9+5+x+0+6+2)=590+x,又甲班學(xué)生的平均分是85,
總分又等于85×7=595.所以x=5
乙班學(xué)生成績(jī)的中位數(shù)是80+y=83,得y=3.
∴x+y=8.
故選B.
點(diǎn)評(píng):本題考查數(shù)據(jù)的平均數(shù)公式與莖葉圖,考查計(jì)算能力,基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂一模)函數(shù)f(x)=ln
x
x-1
+x
1
2
的定義域?yàn)椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂一模)定義在R上的偶函數(shù)f(x)對(duì)任意的x∈R有f(1+x)=f(1-x),且當(dāng)x∈[2,3]時(shí),f(x)=-x2+6x-9.若函數(shù)y=f(x)-logax在(0,+∞)上有四個(gè)零點(diǎn),則a的值為
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂一模)如圖所示,在邊長(zhǎng)為l的正方形OABC中任取一點(diǎn)P,則點(diǎn)P恰好取自陰影部分的概率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂一模)已知實(shí)數(shù)x,y滿足不等式組
x-y+2≥0
x+y-4≥0
2x-y-5≤0
,若目標(biāo)函數(shù)z=y-ax取得最大值時(shí)的唯一最優(yōu)解是(1,3),則實(shí)數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•臨沂一模)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn)為A、B,離心率為
3
2
,直線x-y+l=0經(jīng)過(guò)橢圓C的上頂點(diǎn),點(diǎn)S是橢圓C上位于x軸上方的動(dòng)點(diǎn),直線AS,BS與直線l:x=-
10
3
分別交于M,N兩點(diǎn).
(I)求橢圓C的方程;
(Ⅱ)求線段MN長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段MN長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)P,使得△PAS的面積為l?若存在,確定點(diǎn)P的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案