1.已知向量$\overrightarrow a=(-1,x)$,$\overrightarrow b=(2,y)$且$\overrightarrow a⊥\overrightarrow b$,則|$\overrightarrow a+\overrightarrow b|$的最小值為4.

分析 由向量垂直的條件得到xy=2.從而|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{(-1+2)^{2}+(x+y)^{2}}$=$\sqrt{{x}^{2}+{y}^{2}+13}$≥$\sqrt{2xy+12}$,由此能求出|$\overrightarrow{a}+\overrightarrow$|的最小值.

解答 解:∵向量$\overrightarrow a=(-1,x)$,$\overrightarrow b=(2,y)$且$\overrightarrow a⊥\overrightarrow b$,
∴$\overrightarrow{a}•\overrightarrow$=-2+xy=0,即xy=2.
∴|$\overrightarrow{a}+\overrightarrow$|=$\sqrt{(-1+2)^{2}+(x+y)^{2}}$
=$\sqrt{9+{x}^{2}+{y}^{2}+4}$
=$\sqrt{{x}^{2}+{y}^{2}+13}$
≥$\sqrt{2xy+12}$
=$\sqrt{16}$
=4.
∴|$\overrightarrow{a}+\overrightarrow$|的最小值為4.
故答案為:4.

點(diǎn)評(píng) 本題考查向量的模的最小值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量垂直的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{ax+b}{{{x^2}+1}}$是定義在(-1,1)上的奇函數(shù),且f(1)=1.
(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在(-1,1)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若函數(shù)f(x)=xln(x+$\sqrt{a+{x}^{2}}$)為偶函數(shù),則a的值為( 。
A.0B.1C.-1D.1或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)y=$\frac{f(|x|)}{x-2}$的定義域?yàn)椋ā 。?table class="qanwser">A.(1,2)B.(-2,2)C.(-1,2)D.[-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l:y=x+2與圓x2+y2=6相交的弦長為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長軸長,且橢圓的離心率為$\frac{1}{2}$,若拋物線C:y2=2px的焦點(diǎn)與橢圓的焦點(diǎn)重合.
(1)求該橢圓的方程和拋物線的方程
(2).若過拋物線C的焦點(diǎn)且與直線l平行的直線交拋物線于M,N兩點(diǎn),點(diǎn)P為直線l上的動(dòng)點(diǎn),試求$\overrightarrow{PM}$$•\overrightarrow{PN}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=1-sin(2x+$\frac{π}{6}$)-2sin2x,要得到y(tǒng)=f(x)的圖象,只需將函數(shù)y=cos2x的圖象(  )
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向右平移$\frac{π}{6}$個(gè)單位D.向左平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若要使如圖程序框圖輸出的s值是$\frac{50}{51}$,其中菱形判斷框內(nèi)填入的條件是( 。
A.i=0B.i>50C.i≥51D.i≥50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=x,g(x)是定義在R上的偶函數(shù),當(dāng)x>0時(shí)g(x)=lnx,則函數(shù)y=f(x)•g(x)的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知等差數(shù)列{an}的前20項(xiàng)和S20=340,則a6+a9+a11+a14 等于( 。
A.31B.34C.68D.70

查看答案和解析>>

同步練習(xí)冊(cè)答案