(本小題9分)
如圖,四棱錐S—ABCD的底面是正方形,SD平面ABCD,SD=2a,,點E是SD上的點,且
(Ⅰ)求證:對任意的,都有
(Ⅱ)設(shè)二面角C—AE—D的大小為,直線BE與平面ABCD所成的角為,若,求的值
(Ⅰ)見解析;
(Ⅱ)
【解析】(1)可以通過證明即可。
(II)先找出二面角C-AE-D的平面角∠CDF,即∠CDF=.直線BE與平面ABCD所成的角,即=.然后再根據(jù)建立關(guān)于的方程,解出的值。
解:Ⅰ)證法1:如圖1,連接BE、BD,
由底面ABCD是正方形可得AC⊥BD。
SD⊥平面ABCD,BD是BE在平面ABCD上的射影,AC⊥BE ------3分
(Ⅱ)如圖1,
由SD⊥平面ABCD知,∠DBE= ,
SD⊥平面ABCD,CD平面ABCD, SD⊥CD。
又底面ABCD是正方形, CD⊥AD,而SD AD=D,CD⊥平面SAD.
連接AE、CE,過點D在平面SAD內(nèi)作DE⊥AE于F,連接CF,則CF⊥AE,
故∠CDF是二面角C-AE-D的平面角,即∠CDF=。 ------------------5分
在Rt△BDE中,BD=2a,DE=
在Rt△ADE中,
從而在中, --7分
由,得.
由,解得,即為所求. ---------------------------------9分
(1)證法2:以D為原點,的方向分別作為x,y,z軸的正方向建立如
圖2所示的空間直角坐標系,
則:D(0,0,0),A(,0,0),B(,,0),C(0,,0),E(0,0),---------2分
, 即。 ---------3分
解法2:
由(I)得.
設(shè)平面ACE的法向量為n=(x,y,z),則由得
。--------------------5分
易知平面ABCD與平面ADE的一個法向量分別為. -------------7分
0<,,
=1
由于,解得,即為所求。--------------------9分
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高二上期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題9分)如圖是一個空間幾何體的三視圖,其正視圖與側(cè)視圖是邊長為4cm的正三角形、俯視圖中正方形的邊長為4cm,
(1)畫出這個幾何體的直觀圖(不用寫作圖步驟);
(2)請寫出這個幾何體的名稱,并指出它的高是多少;
(3)求出這個幾何體的表面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省杭州市高二上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本小題滿分9分)如圖,圓錐中,為底面圓的兩條直徑,,且⊥,, 為的中點.
(Ⅰ)求證:∥平面;
(Ⅱ)求圓錐的表面積;
(Ⅲ)求異面直線與所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年浙江省高二第二學(xué)期期中考試數(shù)學(xué)(理科)試題 題型:解答題
(本小題9分)
如圖所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,現(xiàn)將沿折線CD折成60°的二面角P—CD—A,設(shè)E,F(xiàn),G分別是PD,PC,BC的中點。
(I)求證:PA//平面EFG;
(II)若M為線段CD上的一個動點,問當M在什么位置時,MF與平面EFG所成角最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市高一下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題9分)如圖:已知圓和定點,由圓外一點向圓引切線,切點為,且滿足
(1)求實數(shù)間滿足的等量關(guān)系;(2)求線段長的最小值;(3)若以為圓心所作的圓與圓有公共點,試求半徑最小時圓的方程
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com