【題目】如圖1,已知四邊形BCDE為直角梯形,,,且,ABE的中點沿AD折到位置如圖,連結PC,PB構成一個四棱錐

求證;

平面ABCD

求二面角的大;

在棱PC上存在點M,滿足,使得直線AM與平面PBC所成的角為,求的值.

【答案】詳見解析;,②

【解析】

可以通過已知證明出平面PAB,這樣就可以證明出;

以點A為坐標原點,分別以AB,AD,APx,y,z軸,建立空間直角坐標系,可以求出相應點的坐標,求出平面PBC的法向量為、平面PCD的法向量,利用空間向量的數(shù)量積,求出二面角的大;

求出平面PBC的法向量,利用線面角的公式求出的值.

證明:在圖1中,,,

為平行四邊形,,

,

沿AD折起時,,,即,,

,平面PAB

平面PAB

解:以點A為坐標原點,分別以AB,ADAPxy,z軸,建立空間直角坐標系,由于平面ABCD

0,0,1,0,,1,

1,,1,,0,,

設平面PBC的法向量為y,

,取,得0,

設平面PCD的法向量b,

,取,得1

設二面角的大小為,可知為鈍角,

,

二面角的大小為

AM與面PBC所成角為,

0,1,,

平面PBC的法向量0,

直線AM與平面PBC所成的角為

,

解得

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.
(1)求動圓圓心的軌跡C的方程;
(2)已知點B(﹣1,0),設不垂直于x軸的直線與軌跡C交于不同的兩點P,Q,若x軸是∠PBQ的角平分線,證明直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).

(1)分別計算按這兩種方案所建的倉庫的體積;

(2)分別計算按這兩種方案所建的倉庫的表面積;

(3)哪個方案更經(jīng)濟些?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)滿足x2f′(x)+2xf(x)= ,f(2)= ,則x>0時,f(x)(
A.有極大值,無極小值
B.有極小值,無極大值
C.既有極大值又有極小值
D.既無極大值也無極小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設向量 ,
(1)若 ,求x的值;
(2)設函數(shù) ,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線C1:x2=4y,C2:x2=﹣2py(p>0),點M(x0 , y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O),當x0=1﹣ 時,切線MA的斜率為﹣

(1)求P的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青春電視公開課。每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了、兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表

非常滿意

滿意

合計

30

合計

已知在被調(diào)查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當中“非常滿意”的觀眾的概率為,.

(Ⅰ)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調(diào)查,則應抽取“滿意”的地區(qū)的人數(shù)各是多少;

(Ⅱ)完成上述表格,并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關系

(Ⅲ)若以抽樣調(diào)查的頻率為概率,從地區(qū)隨機抽取3人,設抽到的觀眾“非常滿意”的人數(shù)為,的分布列和期望.

附:參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正項數(shù)列{an}的前n項和Sn滿足:Sn2
(1)求數(shù)列{an}的通項公式an
(2)令b ,數(shù)列{bn}的前n項和為Tn . 證明:對于任意n∈N* , 都有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上的偶函數(shù)滿足,且, ,則函數(shù)的零點個數(shù)是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

同步練習冊答案