已知展開式數(shù)學(xué)公式+…對x∈R且x≠0恒成立,方程數(shù)學(xué)公式=0有無究多個(gè)根:±π,±2π,…±nπ,…,則1-數(shù)學(xué)公式…,比較兩邊x2的系數(shù)可以推得1+數(shù)學(xué)公式.設(shè)代數(shù)方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根:±x1,±x2,…±xn,類比上述方法可得a1=________.(用x1,x2,…,xn表示)


分析:由已知中式+…對x∈R且x≠0恒成立,方程=0有無究多個(gè)根:±π,±2π,…±nπ,…,則,1-…,比較兩邊x2的系數(shù)可以推得1+.類比推理可由代數(shù)方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根:±x1,±x2,…±xn,轉(zhuǎn)化 為1-a1x2+a2x4-…+(-1)nanx2n=,比較兩邊x2的系數(shù)即可得到答案.
解答:由1-中,
比較兩邊x2的系數(shù)可以推得:1+
類比揄代數(shù)方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根:±x1,±x2,…±xn,
即1-a1x2+a2x4-…+(-1)nanx2n=中,
比較兩邊x2的系數(shù)可以推得:a1=(
故答案為:(
點(diǎn)評:本題考查的知識點(diǎn)是類比推理,其中由已知根據(jù)方程根的形式,將一個(gè)累加式變成一個(gè)累乘式,用到一次類比推理;現(xiàn)時(shí)觀察兩邊x2的系數(shù)得到結(jié)論,又用到一次類比,故難較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)代數(shù)方程a0-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根±x1,±x2,…,±xn,則a0-a1x2+a2x4-…+(-1)nanx2n=a0(1-
x2
x
2
1
)(1-
x2
x
2
2
)•…•(1-
x2
x
2
n
)
,比較兩邊x2的系數(shù)得a1=
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
a0(
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
)
(用a0•x1•x2•…•xn表示);若已知展開式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…
對x∈R,x≠0成立,則由于
sinx
x
=0
有無窮多個(gè)根:±π,±2π,…,+±nπ,…,于是1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)•…•(1-
x2
n2π2
)•…
,利用上述結(jié)論可得1+
1
22
+
1
32
+…+
1
n2
+…
=
π2
6
π2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知展開式
sinx
x
=1-
x2
3!
+
x4
5!
-
x6
7!
+…對x∈R且x≠0恒成立,方程
sinx
x
=0有無究多個(gè)根:±π,±2π,…±nπ,…,則1-
x2
3!
+
x4
5!
-
x6
7!
+…=(1-
x2
π2
)(1-
x2
22π2
)…(1-
x2
n2π2
)
…,比較兩邊x2的系數(shù)可以推得1+
1
22
+
1
32
+…+
1
n2
+…=
π2
6
.設(shè)代數(shù)方程1-a1x2+a2x4-…+(-1)nanx2n=0有2n個(gè)不同的根:±x1,±x2,…±xn,類比上述方法可得a1=
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
1
x
2
1
+
1
x
2
2
+…+
1
x
2
n
.(用x1,x2,…,xn表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南通中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

理科附加題:
已知展開式的各項(xiàng)依次記為a1(x),a2(x),a3(x),…an(x),an+1(x).
設(shè)F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系數(shù)依次成等差數(shù)列,求n的值;
(Ⅱ)求證:對任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省宿遷中學(xué)高三(上)第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

理科附加題:
已知展開式的各項(xiàng)依次記為a1(x),a2(x),a3(x),…an(x),an+1(x).
設(shè)F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系數(shù)依次成等差數(shù)列,求n的值;
(Ⅱ)求證:對任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省淮安市清江附中高三(上)第二次調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

理科附加題:
已知展開式的各項(xiàng)依次記為a1(x),a2(x),a3(x),…an(x),an+1(x).
設(shè)F(x)=a1(x)+2a2(x)+3a3(x),…+nan(x)+(n+1)an+1(x).
(Ⅰ)若a1(x),a2(x),a3(x)的系數(shù)依次成等差數(shù)列,求n的值;
(Ⅱ)求證:對任意x1,x2∈[0,2],恒有|F(x1)-F(x2)|≤2n-1(n+2).

查看答案和解析>>

同步練習(xí)冊答案