(2013•日照二模)已知定義在R上的可導(dǎo)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),滿足f′(x)<f(x),且f(x+2)為偶函數(shù),f(4)=1,則不等式f(x)<ex的解集為( 。
分析:構(gòu)造函數(shù)g(x)=
f(x)
ex
(x∈R),研究g(x)的單調(diào)性,結(jié)合原函數(shù)的性質(zhì)和函數(shù)值,即可求解
解答:解:∵y=f(x+2)為偶函數(shù),∴y=f(x+2)的圖象關(guān)于x=0對稱
∴y=f(x)的圖象關(guān)于x=2對稱
∴f(4)=f(0)
又∵f(4)=1,∴f(0)=1
設(shè)g(x)=
f(x)
ex
(x∈R),則g′(x)=
f′(x)ex-f(x)ex 
(ex)2
=
f′(x)-f(x) 
ex

又∵f′(x)<f(x),∴f′(x)-f(x)<0
∴g′(x)<0,∴y=g(x)在定義域上單調(diào)遞減
∵f(x)<ex
∴g(x)<1
又∵g(0)=
f(0)
e0
=1
∴g(x)<g(0)
∴x>0
故選B.
點(diǎn)評:本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,結(jié)合已知條件構(gòu)造函數(shù),然后用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照二模)如圖:(1)是反映某條公共汽車線路收支差額(即營運(yùn)所得票價(jià)收入與付出成本的差)y與乘客量x之間關(guān)系的圖象.由于目前該條公交線路虧損,公司有關(guān)人員提出了兩種調(diào)整的建議,如圖(2)(3)所示.
給出下說法:
①圖(2)的建議是:提高成本,并提高票價(jià);  、趫D(2)的建議是:降低成本,并保持票價(jià)不變;
③圖(3)的建議是:提高票價(jià),并保持成本不變;④圖(3)的建議是:提高票價(jià),并降低成本.
其中所有說法正確的序號是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照二模)設(shè)全集U={-2,-1,0,1,2},集合A={-1,1,2},B={-1,1},則A∩(?B)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照二模)“x2-2x<0”是“0<x<4”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照二模)執(zhí)行如圖所示的程序,若輸出的結(jié)果是4,則判斷框內(nèi)實(shí)數(shù)m的值可以是( 。

查看答案和解析>>

同步練習(xí)冊答案