已知數(shù)列{an}滿(mǎn)足a1=數(shù)學(xué)公式,an=數(shù)學(xué)公式(n≥2,n∈N*),數(shù)列{bn}的前n項(xiàng)和Sn,滿(mǎn)足:數(shù)學(xué)公式
(I)求數(shù)列{an}、{bn}的通項(xiàng)公式an,bn
(II)設(shè)數(shù)學(xué)公式,①求數(shù)列{bncn}前n項(xiàng)的和Tn,②求數(shù)列數(shù)學(xué)公式前n項(xiàng)的和An

解:(I)因?yàn)閍n=(n≥2,n∈N*),
所以,設(shè),
則dn-dn-1=n(n≥2,n∈N*),d1=1,
由累加法可得:,故
①,∴
②-①得=bn+1,∴bn+1=-2bn
把n=1代入①式可得b1=-2,

(II)由(I)可知==n
①bncn=n•(-2)n
n•(-2)n
-2n•(-2)n+1
兩式相減得:(-2)n-n•(-2)n+1
==
故所求數(shù)列的前n項(xiàng)和為:
②∵sin1=sin[(n+1)-n]=sin(n+1)cosn-cos(n+1)sinn
==
=
故所求數(shù)列的前n項(xiàng)和為:
An=[(tan2-tan1)+(tan3-tan2)+…+(tan(n+1)-tann)]
=[tan(n+1)-tann]
分析:(I)把式子變形,構(gòu)造數(shù)列{dn}由累加法可得an,由數(shù)列的通項(xiàng)和前n想和的關(guān)系可得bn
(II)①由數(shù)列{bncn}的特點(diǎn),用錯(cuò)位相減法可求和,②式子可化為,下面用裂項(xiàng)相消法可得答案.
點(diǎn)評(píng):本題為數(shù)列的綜合應(yīng)用,涉及累加法,錯(cuò)位相減法,裂項(xiàng)相消法,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿(mǎn)足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn;
(3)數(shù)列{an-bn}是否存在最大項(xiàng),如果存在求出,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項(xiàng)公式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:對(duì)于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項(xiàng)的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿(mǎn)足an+1=an+2,且a1=1,那么它的通項(xiàng)公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案