設各項均為正數(shù)的數(shù)列的前n項和為Sn,已知,且對一切都成立.
(1)若λ=1,求數(shù)列的通項公式;
(2)求λ的值,使數(shù)列是等差數(shù)列.

(1);(2)

解析試題分析:(1)本題已知條件是,我們要從這個式子想辦法得出的簡單關系式,變形為,這時我們聯(lián)想到累乘法求數(shù)列通項公式的題型,因此首先由
,又,這個式子可化簡為,這樣就變成我們熟悉的已知條件,已知解法了;(2)這種類型問題,一種方法是從特殊到一般的方法,可由成等差數(shù)列,求出,然后把代入已知等式,得,,這個等式比第(1)題難度大點,把化為,有當n≥2時,,整理,得,特別是可變形為,這樣與第(1)處理方法相同,可得,即,從而說不得是等差數(shù)列.
試題解析:(1)若λ=1,則,
又∵,∴,       2分
,
化簡,得.①       4分
∴當時,.②
②-①,得,∴).       6分
∵當n=1時,,∴n=1時上式也成立,
∴數(shù)列{an}是首項為1,公比為2的等比數(shù)列,an=2n-1).       8分
(2)令n=1,得.令n=2,得.       10分
要使數(shù)列是等差數(shù)列,必須有,解得λ=0.       11分
λ=0時,,且
n≥2時,,
整理,得,,       13分
從而
化簡,得,所以.      15分
綜上所述,),
所以λ=0時,數(shù)列是等差數(shù)列.       16分
考點:遞推公式,累乘法,的關系,等差數(shù)列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足:,其中.
(1)求證:數(shù)列是等比數(shù)列;
(2)令,求數(shù)列的最大項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列滿足:,公比,數(shù)列的前項和為,且.
(1)求數(shù)列和數(shù)列的通項;
(2)設,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的通項公式分別為,.將中的公共項按照從小到大的順序排列構(gòu)成一個新數(shù)列記為.
(1)試寫出,,,的值,并由此歸納數(shù)列的通項公式; 
(2)證明你在(1)所猜想的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在數(shù)列中,若,,為常數(shù)),則稱數(shù)列.
(1)若數(shù)列數(shù)列,,寫出所有滿足條件的數(shù)列的前項;
(2)證明:一個等比數(shù)列為數(shù)列的充要條件是公比為;
(3)若數(shù)列滿足,,設數(shù)列的前項和為.是否存在
正整數(shù),使不等式對一切都成立?若存在,求出的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,用表示時的函數(shù)值中整數(shù)值的個數(shù).
(1)求的表達式.
(2)設,求.
(3)設,若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若數(shù)列{an}滿足an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項,并求出前6項之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
(3)設a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2011項和S2011.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列{an}中,a1=1,前n項和Sn=an.
(1)求a2,a3;
(2)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是首項為,公差為的等差數(shù)列,是其前項和.
(1)若,求數(shù)列的通項公式;
(2)記,,且、、成等比數(shù)列,證明:.

查看答案和解析>>

同步練習冊答案