如圖,四棱錐中,底面為平行四邊形,
底面
(1)證明:平面平面;
(2)若二面角大小為,求與平面所成角的正弦值.

(1)詳見解析;(2).

解析試題分析:(1)根據(jù)所給數(shù)值,滿足勾股定理,所以,,又根據(jù)底面,易證,所以,然后根據(jù)面面垂直的判定定理,,即證兩面垂直;
(2) ∠即為二面角的平面角,即∠根據(jù)已知兩兩垂直,所以可以以為原點,如圖建立空間直角坐標系,設平面的法向量為,利用公式
(1)∵  ∴
又∵⊥底面    ∴
又∵        ∴平面
平面        ∴平面平面         4分

(2)由(1)所證,平面 ,所以∠即為二面角的平面角,即∠
,所以 
因為底面為平行四邊形,所以,
分別以、、軸、軸、軸建立空間直角坐標系.
,,, ,
所以,,,,
設平面的法向量為,則

與平面所成角的正弦值為       12分
考點:1.面面垂直的判定定理;2.空間向量解決線面角.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M, N分別是AB, PC的中點.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)(2011•天津)如圖,在四棱錐P﹣ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC中點,PO⊥平面ABCD,PO=2,M為PD中點.

(Ⅰ)證明:PB∥平面ACM;
(Ⅱ)證明:AD⊥平面PAC;
(Ⅲ)求直線AM與平面ABCD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,是正三角形,平面平面
(1)求證:
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知正四棱柱中,.
(1)求證:
(2)求二面角的余弦值;
(3)在線段上是否存在點,使得平面平面,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2011•湖北)如圖,已知正三棱柱ABC=A1B1C1的各棱長都是4,E是BC的中點,動點F在側(cè)棱CC1上,且不與點C重合.
(1)當CF=1時,求證:EF⊥A1C;
(2)設二面角C﹣AF﹣E的大小為θ,求tanθ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐P -ABCD的底面是矩形,側(cè)面PAD是正三角形,且側(cè)面PAD⊥底面ABCD,E 為側(cè)棱PD的中點。
(1)證明:PB//平面EAC;
(2)若AD="2AB=2," 求直線PB與平面ABCD所成角的正切值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在五面體ABCDEF中,四邊形ABCD是矩形,DE⊥平面ABCD.

(1)求證:AB∥EF;
(2)求證:平面BCF⊥平面CDEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知空間四邊形ABCD中,AB=CD=3,E、F分別是BC、AD上的點,并且BE∶EC=AF∶FD=1∶2,EF=,求AB和CD所成角的余弦值.

查看答案和解析>>

同步練習冊答案