2.設(shè)z=1-i(i是虛數(shù)單位),若復數(shù)$\frac{2}{z}+{z^2}$在復平面內(nèi)對應(yīng)的向量為$\overrightarrow{Oz}$,則向量$\overrightarrow{Oz}$的模是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 利用復數(shù)的除法的運算法則化簡復數(shù)$\frac{2}{z}+{z^2}$,然后求解向量$\overrightarrow{OZ}$的模.

解答 解:z=1-i(i是虛數(shù)單位),
復數(shù)$\frac{2}{z}+{z^2}$=$\frac{2}{1-i}+(1-i)^{2}$=$\frac{2(1+i)}{(1-i)(1+i)}-2i$=1-i.
向量$\overrightarrow{Oz}$的模:$\sqrt{{1}^{2}+(-1)^{2}}$=$\sqrt{2}$.
故選:B.

點評 本題考查復數(shù)的代數(shù)形式混合運算,復數(shù)的模的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=|xex+1|,關(guān)于x的方程f2(x)+2sinα•f(x)+cosα=0有四個不等實根,sinα-cosα≥λ恒成立,則實數(shù)λ的最大值為( 。
A.-$\frac{7}{5}$B.-$\frac{1}{2}$C.-$\sqrt{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內(nèi)的兩個測點C與D.測得∠BCD=15°,∠BDC=30°,CD=40米,并在點C測得塔頂A的仰角為60°,則塔高AB=20$\sqrt{6}$米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.不等式(a-2)x2+2(a-2)x-4≤0對一切x∈R恒成立,則a的取值范圍是( 。
A.(-∞,2]B.[-2,2]C.(-2,2]D.(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.等邊三角形ABC的邊長為1,BC上的高為AD,沿高AD折成直二面角,則A到BC的距離是( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{14}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)$f(x)=\sqrt{2}sin({ωx+φ})({ω>0})$的圖象關(guān)于直線$x=\frac{π}{2}$對稱且$f({\frac{3π}{8}})=1,f(x)$在區(qū)間$[{-\frac{3π}{8},-\frac{π}{4}}]$上單調(diào),則ω可取數(shù)值的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=sinx-cosx,x∈[0,+∞).
(1)證明:$sinx-f(x)≥1-\frac{x^2}{2}$;
(2)證明:當a≥1時,f(x)≤eax-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.化簡求值
(1)化簡$\frac{x-1}{{{x^{\frac{2}{3}}}+{x^{\frac{1}{3}}}+1}}+\frac{x+1}{{{x^{\frac{1}{3}}}+1}}-\frac{{x-{x^{\frac{1}{3}}}}}{{{x^{\frac{1}{3}}}-1}}$;
(2)若2lg(3x-2)=lgx+lg(3x+2),求${log_{\sqrt{x}}}\sqrt{2\sqrt{2\sqrt{2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖,$\overrightarrow{AB}$=2$\overrightarrow{BC},\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,$\overrightarrow{OC}$=$\overrightarrow{c}$,則下列等式中成立的是( 。
A.$\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow$B.$\overrightarrow{c}$=3$\overrightarrow$-$\overrightarrow{a}$C.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{a}$D.$\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$

查看答案和解析>>

同步練習冊答案