(本題共3小題,滿分18分。第1小題滿分4分,第2小題滿分7分,第3小題7分)

 

對定義在上,并且同時滿足以下兩個條件的函數(shù)稱為函數(shù).

① 對任意的,總有

② 當時,總有成立.

已知函數(shù)是定義在上的函數(shù).

(1)試問函數(shù)是否為函數(shù)?并說明理由;

(2)若函數(shù)函數(shù),求實數(shù)的值;

(3)在(2)的條件下,是否存在實數(shù),使方程恰有兩解?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

 

【答案】

解:(1)當時,總有滿足①……………………………1分

時,

滿足②………3分

所以函數(shù)函數(shù);………………………………………………………4分

(2)因為函數(shù)函數(shù),根據(jù)①有,……………6分

根據(jù)②有

…………………………………………………7分

因為

所以,,其中不能同時取到

于是,……………………9分

所以,即,……………10分

于是…………………………………………………………………………11分

另解:因為函數(shù)函數(shù),根據(jù)①有,…………6分

根據(jù)②有

………………………………8分

…………………………………………………………10分

于是…………………………………………………………………………11分

(3)【理科】根據(jù)(2)知,原方程可以化為,……………12分

,……………………………………………………14分

,則,………………………………………15分

由圖形可知:當時,方程有一解;…………………………………16分

時,方程無解;…………………………17分

因此,方程不存在兩解!18分

【文科】根據(jù)(2)知,原方程可以化為,…………………12分

,……………………………………………………14分

,…………………………………………………………………15分

,……………………………………………16分

因此,當時,方程有解!18分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

本題共3個小題,第1、2小題滿分各5分,第3小題滿分6分.
如圖,某小區(qū)準備在一直角圍墻ABC內的空地上植造一塊“綠地△ABD”(點D在線段BC上),設AB長為a,BC長為b,∠BAD=θ.現(xiàn)規(guī)劃在△ABD的內接正方形BEFG內種花,其余地方種草,且把種草的面積S1與種花的面積S2的比值
S1
S2
稱為“草花比y”.
(1)求證:正方形BEFG的邊長為
atanθ
1+tanθ
;
(2)將草花比y表示成θ的函數(shù)關系式;
(3)當θ為何值時,y有最小值?并求出相應的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海浦東高三第六次聯(lián)考理科數(shù)學 題型:解答題

(本題共3小題,滿分16分。第1小題滿分4分,第2小題滿分6分,第3小題6分)

設數(shù)列的前項和為,若對任意的,有成立.

(1)求、的值;

(2)求證:數(shù)列是等差數(shù)列,并寫出其通項公式

(3)設數(shù)列的前項和為,令,若對一切正整數(shù),總有,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市高三上學期期中考試文科數(shù)學試卷 題型:解答題

(本題共3小題,每小題6分,滿分18分)

已知函數(shù)

(1)討論的奇偶性與單調性;

(2)若不等式的解集為的值;

(3)設的反函數(shù)為,若關于的不等式R)有解,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年上海黃浦區(qū)高二下學期基礎學業(yè)測評數(shù)學卷 題型:解答題

(本題滿分10分)本題共3個小題,第1小題滿分4分,第2小題滿分3分,第3小題滿分3分.

已知直線討論當實數(shù)m為何值時,(1)

 

查看答案和解析>>

同步練習冊答案