(2011•江西模擬)若函數(shù)y=f(x)在其圖象上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為自公切線,下列函數(shù)存在自公切線的序號(hào)為
②④
②④

①y=ln|x+1|;②y=x2-|x|;③y=
x2-1
;  ④y=xcosx.
分析:通過畫出函數(shù)圖象,觀察其圖象是否滿足在其上圖象上是否存在兩個(gè)不同點(diǎn)處的切線重合,從而確定是否存在自公切線,從而得到結(jié)論.
解答:解:函數(shù)y=ln|x+1|的圖象如圖1,顯然A不存在;
函數(shù) y=x2-|x|的圖象如圖2顯然滿足要求,故B存在;
y=
x2-1
即x2-y2 =1(y≥0)為等軸雙曲線的一部分,不存在自公切線,故C不存在; 
函數(shù) y=xcosx的圖象如圖3顯然滿足要求,存在自公切線,故D存在;
 故答案為②④
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,以及新定義自公切線,題目比較新穎,解題的關(guān)鍵是理解新的定義,同時(shí)考查了數(shù)形結(jié)合的思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江西模擬)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若a2-b2=
3
bc
,sinC=2
3
sinB
,則A=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江西模擬)已知數(shù)列{an},{bn}分別是等差、等比數(shù)列,且a1=b1=1,a2=b2,a4=b3≠b4
①求數(shù)列{an},{bn}的通項(xiàng)公式;
②設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求{
1
Sn
}的前n項(xiàng)和Tn;
③設(shè)Cn=
anbn
Sn+1
(n∈N),Rn=C1+C2+…+Cn,求Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江西模擬)已知數(shù)列{an}滿足an+1=
2an
an+2
(n∈N*),a2011=
1
2011

(1)求{an}的通項(xiàng)公式;
(2)若bn=
4
an
-4023
cn=
b
2
n+1
+
b
2
n
2bn+1bn
(n∈N*)
,求證:c1+c2+…+cn<n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江西模擬)已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實(shí)數(shù)a,對(duì)任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
(3)給出如下定義:對(duì)于函數(shù)y=F(x)圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),如果對(duì)于函數(shù)y=F(x)圖象上的點(diǎn)M(x0,y0)(其中x0=
x1+x22
)
總能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江西模擬)設(shè)a∈R,f(x)=cosx(asinx-cosx)+cos2(
π
2
-x)
滿足f(-
π
3
)=f(0)
,
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)△ABC三內(nèi)角A,B,C所對(duì)邊分別為a,b,c且
a2+c2-b2
a2+b2-c2
=
c
2a-c
,求f(x)在(0,B]上的值域.

查看答案和解析>>

同步練習(xí)冊答案