下列命題中:
①分別和兩條異面直線均相交的兩條直線一定是異面直線
②一個(gè)平面內(nèi)任意一點(diǎn)到另一個(gè)平面的距離均相等,那么這平面平行
③三棱錐的四個(gè)面可以都是直角三角形
④過兩異面直線外一點(diǎn)能作且只能作出一條直線和這兩條異面直線同時(shí)相交
⑤已知平面α,直線a和直線b,且a∩α=a,b⊥a,則b⊥α
其中正確命題的序號(hào)是
 
(請(qǐng)?zhí)钌纤心阏J(rèn)為正確命題的序號(hào))
考點(diǎn):命題的真假判斷與應(yīng)用
專題:空間角,簡(jiǎn)易邏輯
分析:舉例說(shuō)明①錯(cuò)誤;由兩面平行的定義說(shuō)明②正確;舉例說(shuō)明③④正確;由反證法說(shuō)明⑤錯(cuò)誤.
解答: 解:對(duì)于①,分別和兩條異面直線均相交的兩條直線一定是異面直線錯(cuò)誤,若兩條直線交原異面直線中的一條于一點(diǎn),交另一條于兩點(diǎn),則兩直線相交;
對(duì)于②,一個(gè)平面內(nèi)任意一點(diǎn)到另一個(gè)平面的距離均相等,則兩平面無(wú)交點(diǎn),兩平面平行,命題②正確;
對(duì)于③,三棱錐的四個(gè)面可以都是直角三角形正確,如三條側(cè)棱兩兩垂直,底面是直角三角形,③正確;
對(duì)于④,過兩異面直線外一點(diǎn)能作且只能作出一條直線和這兩條異面直線同時(shí)相交錯(cuò)誤,如點(diǎn)在經(jīng)過兩異面直線中的一條,且與另一條平行的面內(nèi);
對(duì)于⑤,已知平面α,直線a和直線b,且a∩α=A,b⊥a,則b⊥α錯(cuò)誤,原因是,若b⊥α,又b⊥a,可得a∥α或a?α,與a∩α=A矛盾.
∴正確的命題是②③.
故答案為:②③.
點(diǎn)評(píng):本題考查了命題的真假判斷與應(yīng)用,考查了空間中的點(diǎn)、線、面的位置關(guān)系,考查了學(xué)生的空間想象能力和思維能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x2-3(a+1)x+2(3a+1)<0},B={x|
x-2a
x-a2-1
<0
},若B⊆A,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算5 1-log0.23=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=
1
6
x3+
1
2
(a-2)x2+b,g(x)=2alnx
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,0)處的切線互相垂直,求a,b的值.
(2)設(shè)F(x)=f′(x)-g(x),若對(duì)任意的x1,x2∈(0,+∞),且x1≠x2,都有F(x2)-F(x1)>a(x2-x1),并求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,圓C的極坐標(biāo)方程為ρ=sinθ,過極點(diǎn)O的一條直線l與圓C相交于O、A兩點(diǎn),且∠AOx=45°,則OA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)對(duì)任意的正整數(shù)m,n,數(shù)列{an},{bn}滿足3am+n=am•an,且a1=1,bm+n=bn+2m,且b5=13.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=
1
bnbn+1
,求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)設(shè)dn=nan,Tn是數(shù)列{dn}的前n項(xiàng)和,證明:1≤Tn
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的三視圖,根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的體積是( 。
A、
1
12
B、
1
4
C、
1
6
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)幾何體的正(主)視圖及側(cè)(左)視圖均是邊長(zhǎng)為3的正三角形,俯視圖是直徑為3的圓,則此幾何體的體積為( 。
A、
9
2
π
B、9π
C、
9
8
3
π
D、12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,
a
 
1
=
1
4
,an=2-
1
an-1
(n≥2,n∈N*)
.若數(shù)列{bn}滿足bn=
1
an-1
(n∈N+)

(1)證明:數(shù)列{bn}是等差數(shù)列,并寫出{bn}的通項(xiàng)公式;
(2)求數(shù)列{an}的通項(xiàng)公式及數(shù)列{an}中的最大項(xiàng)與最小項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案