11、函數(shù)y=lg(-x2+5x+24)的值小于1,則x的取值范圍為
(-3,-2)∪(7,8)
分析:由題設(shè)知,此題為解對數(shù)不等式的題,由lg(-x2+5x+24)<1,依據(jù)對數(shù)的單調(diào)性轉(zhuǎn)化為一元二次不等式,解之,在轉(zhuǎn)化時要注意對數(shù)的定義域.
解答:解:由已知得lg(-x2+5x+24)<1,考察相應(yīng)函數(shù)的單調(diào)性知
0<-x2+5x+24<10
由 0<-x2+5x+24得-3<x<8
由-x2+5x+24<10得x>7,或x<-2
故有x∈(-3,-2)∪(7,8)
故應(yīng)填(-3,-2)∪(7,8)
點(diǎn)評:考查對數(shù)不等式與一元二次不等式組的解法,訓(xùn)練運(yùn)算技能.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的題號為
 

①集合A={x|x2-3x-10≤0},B={x|a+1≤x≤2a-1},若B⊆A,則-3≤a≤3
②函數(shù)y=f(x)與直線x=l的交點(diǎn)個數(shù)為0或l
③函數(shù)y=f(2-x)與函數(shù)y=f(x-2)的圖象關(guān)于直線x=2對稱
a∈(
14
,+∞)
時,函數(shù)y=lg(x2+x+a)的值域?yàn)镽;
⑤與函數(shù)關(guān)于點(diǎn)(1,-1)對稱的函數(shù)為y=-f(2-x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=lg(-x2+x+2)的定義域?yàn)锳,指數(shù)函數(shù)y=ax(a>0且a≠1)(x∈A)的值域?yàn)锽.
(1)若a=2,求A∪B;
(2)若A∩B=(
12
,2),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集A={x|
2x-5x-3
≤1}
,函數(shù)y=lg(-x2+6x-8)的定義域?yàn)榧螧求:A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式中正確的有
(3)
(3)
.(把你認(rèn)為正確的序號全部寫上)
(1)[(-2)2]
1
2
=-
1
2

(2)已知loga
3
4
<1
,則a>
3
4
;
(3)函數(shù)y=3x的圖象與函數(shù)y=-3-x的圖象關(guān)于原點(diǎn)對稱;
(4)函數(shù)y=x
1
2
是偶函數(shù);
(5)函數(shù)y=lg(-x2+x)的遞增區(qū)間為(-∞,
1
2
].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x(x-3)<0},集合B為函數(shù)y=lg(-x2+x+2)的定義域,則A∩B=
(0,2)
(0,2)

查看答案和解析>>

同步練習(xí)冊答案