已知函數(shù)
(1)將寫(xiě)成的形式,并求其圖象對(duì)稱(chēng)中心的橫坐標(biāo);
(2)如果△ABC的三邊滿足,且邊所對(duì)的角為,試求的范圍及此時(shí)函數(shù)的值域.
(1),
(2) 值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7e/6/jfenn1.png" style="vertical-align:middle;" />
解析試題分析:(1)用三角函數(shù)兩角和的正弦公式化簡(jiǎn)即可得到,對(duì)稱(chēng)中心,即:
(2)由余弦公式及可得:,再由三角形三邊長(zhǎng)的關(guān)系(兩邊之差小于第三邊)得:,整理得:,從而,即:,故有:由角的范圍得函數(shù)值范圍:.
(1)
由=0即
即對(duì)稱(chēng)中心的橫坐標(biāo)為
(2)由已知
即的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7e/6/jfenn1.png" style="vertical-align:middle;" />綜上所述, 值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7e/6/jfenn1.png" style="vertical-align:middle;" />
考點(diǎn):三角函數(shù)的公式及相關(guān)性質(zhì)和恒等變換.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在半徑為、圓心角為60°的扇形的弧上任取一點(diǎn),作扇形的內(nèi)接矩形,使點(diǎn)在上,點(diǎn)在上,設(shè)矩形的面積為.
(1)按下列要求寫(xiě)出函數(shù)關(guān)系式:
①設(shè),將表示成的函數(shù)關(guān)系式;
②設(shè),將表示成的函數(shù)關(guān)系式.
(2)請(qǐng)你選用(1)中的一個(gè)函數(shù)關(guān)系式,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若是第二象限角,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=-sin(2x+)+6sinxcosx-2cos2x+1,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[0,]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,角A,B,C的對(duì)邊分別為a,b,c,若.
(1)求B;
(2)設(shè)函數(shù),求函數(shù)上的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com