10.已知函數(shù)f(x)=$\sqrt{x+5}$+$\frac{1}{x-2}$.
(1)求函數(shù)的定義域;
(2)求f(-4),f($\frac{2}{3}$)的值.

分析 (1)要使函數(shù)有意義,自變量x的取值必須滿足$\left\{\begin{array}{l}x+5≥0\\ x-2≠0\end{array}\right.$,求解得函數(shù)的定義域;
(2)把f(-4),f($\frac{2}{3}$)代入函數(shù)f(x)=$\sqrt{x+5}$+$\frac{1}{x-2}$求值即可得答案.

解答 解:(1)要使函數(shù)有意義,自變量x的取值必須滿足$\left\{\begin{array}{l}x+5≥0\\ x-2≠0\end{array}\right.$,解得x≥-5且x≠2,
即函數(shù)的定義域?yàn)閧x|x≥-5且x≠2}.
(2)∵f(x)=$\sqrt{x+5}$+$\frac{1}{x-2}$,
∴f(-4)=$\sqrt{-4+5}+\frac{1}{-4-2}=1-\frac{1}{6}=\frac{5}{6}$.
f($\frac{2}{3}$)=$\sqrt{\frac{2}{3}+5}+\frac{1}{\frac{2}{3}-2}=\frac{\sqrt{51}}{3}-\frac{3}{4}$.

點(diǎn)評 本題考查了函數(shù)的定義域及其求法,考查了函數(shù)的值的求法,考查了不等式的解法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={1,2,3},B={2,3},則( 。
A.A=BB.B∈AC.A?BD.B?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,是偶函數(shù)且在(0,+∞)上為增函數(shù)的是( 。
A.y=cosxB.y=-x2+1C.y=log2|x|D.y=ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知兩個(gè)等差數(shù)列{an},{bn},它們的前n項(xiàng)和分別是Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+3}{3n-1}$,則$\frac{{a}_{7}}{_{7}}$=$\frac{29}{38}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{4^x},x≤0\end{array}$,則f(f(-2))的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,點(diǎn)M在線段EC上.
(Ⅰ)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:BM∥平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為$\frac{\sqrt{6}}{6}$時(shí),求棱錐M-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=tan(2x+$\frac{π}{3}$)的圖象的一個(gè)對稱中心的坐標(biāo)為( 。
A.($\frac{π}{12}$,0)B.($\frac{π}{6}$,0)C.($\frac{π}{4}$,0)D.($\frac{2π}{3}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,則使得f(x)>f(2x-3)成立的取值范圍是( 。
A.(-∞,1)∪(3,+∞)B.(-∞,3)C.(1,3)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C的中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為$\frac{1}{2}$,橢圓C上的點(diǎn)到右焦點(diǎn)的最大距離為3.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)斜率存在的直線l與橢圓C交于A,B兩點(diǎn),并且滿足|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|2$\overrightarrow{OA}$-$\overrightarrow{OB}$|,求直線在y軸上截距的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案