若關(guān)于x的不等式ax2+bx+2>0的解集為(-
1
2
1
3
),其中a,b為常數(shù),則a+b=
-14
-14
分析:由于關(guān)于x的不等式ax2+bx+2>0的解集為(-
1
2
,
1
3
),可得a<0,且-
1
2
,
1
3
是方程ax2+bx+2=0的實數(shù)根,利用根與系數(shù)的關(guān)系即可得出.
解答:解:∵關(guān)于x的不等式ax2+bx+2>0的解集為(-
1
2
1
3
),
∴a<0,且-
1
2
,
1
3
是方程ax2+bx+2=0的實數(shù)根,
a<0
-
1
2
+
1
3
=-
b
a
-
1
2
×
1
3
=
2
a
,解得
a=-12
b=-2

∴a+b=-14.
故答案為-14.
點評:本題考查了一元二次不等式的解集與相應(yīng)的一元二次方程的實數(shù)根的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式ax-b>0的解集是(1,+∞),則關(guān)于x的不等式
ax+b
x-2
>0
的解集是( 。
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-1,2)
D、(-∞,1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式|ax+2|<6的解集為(-1,2),則實數(shù)a的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•閘北區(qū)二模)若關(guān)于x的不等式ax+b>2(x+1)的解集為{x|x<1},則b的取值范圍為
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式(ax-20)lg
2ax
≤0
對任意的正實數(shù)x恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省分校高三10月學(xué)習(xí)質(zhì)量診斷理科數(shù)學(xué)試卷(解析版) 題型:填空題

若關(guān)于x的不等式ax 2 - |x| + 2a <0的解集為,則實數(shù)a的取值范圍為 ________.

 

查看答案和解析>>

同步練習(xí)冊答案