某宇宙飛船的運行軌道是以地球中心F為焦點的橢圓,測得近地點A距離地面m(km),遠地點B距離地面n(km),地球半徑為R(km),關于這個橢圓有以下四種說法:①焦距長為n-m;②短軸長為
(m+R)(n+R)
;③離心率e=
n-m
m+n+2R
;其中正確的序號為
①③
①③
分析:由題意,n+R=a+c,m+R=a-c,①直接求n-m的表達式即可;②求出a,c,即可求得b的值;③由②知e=
n-m
m+n+2R
解答:解:由題意n+R=a+c,m+R=a-c,
①可解得n-m=2c,故①正確;
②由n+R=a+c,m+R=a-c,得a=
m+n+2R
2
,c=
n-m
2
,∴b=
a2-c2
=
(m+R)(n+R)
,故此命題不對;
③由②知e=
n-m
m+n+2R
,故此命題正確;
綜上可知,正確的序號為:①③
點評:本題考查橢圓的應用,綜合考查了橢圓的長軸、短軸、以及離心率等性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某宇宙飛船的運行軌道是以地球中心F為焦點的橢圓,測得近地點A距離地面m(km),遠地點B距離地面n(km),地球半徑為R(km),關于這個橢圓有以下四種說法:
①焦距長為n-m;②短軸長為
(m+R)(n+R)
;③離心率e=
n-m
m+n+2R
;④若以AB方向為x軸正方向,F(xiàn)為坐標原點,則與F對應的準線方程為x=-
2(m+R)(n+R)
(n-m)
,其中正確的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年濰坊市八模) 某宇宙飛船的運行軌道是以地球中心F為焦點的橢圓,測得近地點A距離地面,遠地點B距離地面,地球半徑為,關于這個橢圓有以下四種說法:

 、俳咕嚅L為;②短軸長為;③離心率;④若以AB方向為x軸正方向,F為坐標原點,則與F對應的準線方程為,其中正確的序號為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某宇宙飛船的運行軌道是以地球中心F為焦點的橢圓,測得近地點A距離地面m(km),遠地點B距離地面n(km),地球半徑為R(km),關于這個橢圓有以下四種說法:
①焦距長為n-m;②短軸長為
(m+R)(n+R)
;③離心率e=
n-m
m+n+2R
;④若以AB方向為x軸正方向,F(xiàn)為坐標原點,則與F對應的準線方程為x=-
2(m+R)(n+R)
(n-m)
,其中正確的序號為______.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年新教材高考數(shù)學模擬題詳解精編試卷(8)(解析版) 題型:解答題

某宇宙飛船的運行軌道是以地球中心F為焦點的橢圓,測得近地點A距離地面m(km),遠地點B距離地面n(km),地球半徑為R(km),關于這個橢圓有以下四種說法:
①焦距長為n-m;②短軸長為;③離心率;④若以AB方向為x軸正方向,F(xiàn)為坐標原點,則與F對應的準線方程為,其中正確的序號為   

查看答案和解析>>

同步練習冊答案