求證  f(n)= 對任意自然數(shù),f(n)都能被8整除

 

【答案】

【解析】略         

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于n∈N*(n≥2),定義一個如下數(shù)陣:Ann=
a11a12a1n
a21a22a2n
an1an2ann
,其中對任意的1≤i≤n,1≤j≤n,當(dāng)i能整除j時,aij=1;當(dāng)i不能整除j時,aij=0.設(shè)t(j)=
n
i=1
aij=a1j+a2j+…+anj

(Ⅰ)當(dāng)n=6時,試寫出數(shù)陣A66并計算
6
j=1
t(j)
;
(Ⅱ)若[x]表示不超過x的最大整數(shù),求證:
n
j=1
t(j)
=
n
i=1
n
i
 ]
;
(Ⅲ)若f(n)=
1
n
n
j=1
t(j)
,g(n)=
n
1
1
x
dx
,求證:g(n)-1<f(n)<g(n)+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•海淀區(qū)二模)將一個正整數(shù)n表示為a1+a2+…+ap(p∈N*)的形式,其中ai∈N*,i=1,2,…,p,且a1≤a2≤…≤ap,記所有這樣的表示法的種數(shù)為f(n)(如4=4,4=1+3,4=2+2,4=1+1+2,4=1+1+1+1,故f(4)=5).
(Ⅰ)寫出f(3),f(5)的值,并說明理由;
(Ⅱ)對任意正整數(shù)n,比較f(n+1)與
12
[f(n)+f(n+2)]
的大小,并給出證明;
(Ⅲ)當(dāng)正整數(shù)n≥6時,求證:f(n)≥4n-13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證  f(n)= 對任意自然數(shù),f(n)都能被8整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證  f(n)= 對任意自然數(shù),f(n)都能被8整除

查看答案和解析>>

同步練習(xí)冊答案