在等差數(shù)列{an}中,若ap=q2,aq=p2(p≠q),則ap+q等于(    )
A.0B.q-pC.p+qD.-pq
D
(p-q)d=q2-p2,
∴d=-(p+q).
∴ap+q=ap+qd=q2-q(p+q)=-pq.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列的各項(xiàng)都是正數(shù), , .
⑴求數(shù)列的通項(xiàng)公式;⑵求數(shù)列的通項(xiàng)公式;
⑶求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=2x-2-x,數(shù)列{an}滿足f(log2an)=-2n.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{an}是遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列的前項(xiàng)和為).
(Ⅰ)證明數(shù)列是等比數(shù)列,求出數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和;
(Ⅲ)數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項(xiàng);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知,等差數(shù)列的首項(xiàng),公差,且第二項(xiàng)、第五項(xiàng)、第十四項(xiàng)分別是等比數(shù)列的第二項(xiàng)、第三項(xiàng)、第四項(xiàng)。(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列對(duì)任意正整數(shù)均有成立,求數(shù)列的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列{an}的前三項(xiàng)為x-1,x+1,2x+3,則這個(gè)數(shù)列的通項(xiàng)公式是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列{an}中,a1=84,a2=80,則使an≥0且an+1<0的n為(   )
A.21B.22C.23D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1-an-1=0,數(shù)列{bn}滿足b1=2,anbn+1=2an+1bn.
(1)求S;
(2)求bn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

數(shù)列中,,且數(shù)列是等差數(shù)列,則=___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案