某工廠生產(chǎn)某種產(chǎn)品最多不超過(guò)40件,并且在生產(chǎn)過(guò)程中產(chǎn)品的正品率P與每日生產(chǎn)量x(x∈N*)件之間的關(guān)系為,每生產(chǎn)一件正品可以盈利4000元,每出現(xiàn)一件次品則虧損2000元.

(注:,日利潤(rùn)=日盈利-日虧損)

(1)將日利潤(rùn)y(元)表示成日產(chǎn)量x(件)的函數(shù);

(2)該廠的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?并求出最大利潤(rùn).

答案:
解析:

  (1);

  (2)日產(chǎn)量為30件時(shí),日利潤(rùn)最大,最大利潤(rùn)為72000元.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的產(chǎn)量x(噸)與每噸產(chǎn)品的價(jià)格P(元/噸)之間的關(guān)系為P=24200-
15
x2
,且生產(chǎn)x噸的成本為R=50000+200x元.問(wèn)該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤(rùn)達(dá)到最大?最大利潤(rùn)是多少?(利潤(rùn)=收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)某種產(chǎn)品固定成本為2000萬(wàn)元,并且每生產(chǎn)一單位產(chǎn)品,成本增加10萬(wàn)元,又知總收入k是單位產(chǎn)品數(shù)Q的函數(shù),k(Q)=40Q-
120
Q2,則總利潤(rùn)L(Q)的最大值是
2500萬(wàn)元
2500萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:元)與日產(chǎn)里x(單位:噸)滿足函數(shù)關(guān)系式C=10000+20x,每日的銷售額R(單位:元)與日產(chǎn)量x滿足函數(shù)關(guān)系式
R=
-
1
30
x3+ax2 +290x,0<x<120
20400,x>120

已知每日的利潤(rùn)y=R-C,且當(dāng)x=30時(shí)y=-100.
(I)求a的值;
(II)當(dāng)日產(chǎn)量為多少噸時(shí),毎日的利潤(rùn)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)某種產(chǎn)品,每日的成本C(單位:萬(wàn)元)與日產(chǎn)量x(單位:噸)滿足函數(shù)關(guān)系式C=3+x,每日的銷售額S(單位:萬(wàn)元)與日產(chǎn)量x的函數(shù)關(guān)系式S=
x+
k
x-8
+5    (0<x<6)
14                  (x≥6)
,已知每日的利潤(rùn)L=S-C,且當(dāng)x=2時(shí),L=3.
(1)求k的值;
(2)當(dāng)日產(chǎn)量為多少噸時(shí),每日的利潤(rùn)可以達(dá)到最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案