計算:
(1)已知全集為R,集合A={x|-2≤x≤5},B={x|1≤x≤6},求∁UA∩∁UB;
(2)3log34-27
2
3
-lg0.01+lne3
考點:對數(shù)的運(yùn)算性質(zhì),交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:結(jié)合數(shù)軸,對集合進(jìn)行交、并、補(bǔ)的運(yùn)算.
解答: (1)解:A∪B═{x|-2≤x≤6},∁UA∩∁UB=CU(A∪B)={x|x<-2或x>6};…(6分)
(2)解:3log34-27
2
3
-lg0.01+lne3=4-
3272
-lg10-2+3=4-9+2+3=0;…(12分)
點評:本題考查了集合的運(yùn)算以及對數(shù)式的化簡;
對于集合的運(yùn)算,一般結(jié)合數(shù)軸使運(yùn)算直觀簡便.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

四棱錐P-ABCD中,底面ABCD為平行四邊形,且AC⊥AB,且O,E分別為BC,AB的中點,H是SB的中點.
已知∠ABC=45°,AB=2,PA=PB=PC=
3

(1)求證:AB⊥PO;
(2)求三棱錐P-ACD的體積;
(3)求CH與平面POE所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2alnx.
(1)若函數(shù)f(x)的圖象在(2,f(2))處的切線斜率為1,求實數(shù)a的值;
(2)若函數(shù)g(x)=
2
x
+f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在對于定義域為R的函數(shù)f(x),若存在非零實數(shù)x0,使函數(shù)f(x)在(-∞,x0)和(x0,+∞)上均有零點,則稱x0為函數(shù)f(x)的一個“紐點”.則下列四個函數(shù)中,不存在“紐點”的是( 。
A、f(x)=x2+bx-1(b∈R)
B、f(x)=2x-x2
C、f(x)=
x3
3
-x-1
D、f(x)=2-|x-1|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=n-5an-85,n∈N*
(Ⅰ)證明:{an-1}是等比數(shù)列;
(Ⅱ)是否存在正整數(shù)n,使得Sn<n-
455
12
?若存在,求n的最小值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C是圓O:x2+y2=1上任意的不同三點,若
OA
=3
OB
+x
OC
,則正實數(shù)x的取值范圍為(  )
A、(0,2)
B、(2,4)
C、(1,4)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,若an=
1
n
+
n+1
,則S99的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=loga(x-3a)(a>0且a≠1),當(dāng)點P(x,y)是函數(shù)y=f(x)圖象上的點時,點
Q(x-2a,-y)是函數(shù)y=g(x)圖象上的點.
(1)寫出函數(shù)y=g(x)的解析式;
(2)若當(dāng)x∈[a+2,a+3]時,恒有|f(x)-g(x)|≤1,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3 
1-x
的減區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊答案