直線l過點P(2,1),且分別與x軸、y軸的正半軸交于點A、B,O是坐標原點,

(1)當△AOB面積最小時,求直線l的方程;

(2)當|PA|·|PB|取最小值時,求直線l的方程.

 

解析:

(1)設(shè)直線l在x軸、y軸上的截距分別為a>0、b>0,則l:=1.又P∈l,

∴1=≥2.

∴ab≥8,S△AOB=ab≥4.

∴(S△AOB) min=4.此時.

∴a=4,b=2.∴l(xiāng):x+2y-4=0.

(2)設(shè)∠OAB=α,

∴|PA|=,|PB|=.

∴|PA|·|PB|=≥4,

即(|PA|·|PB|)min=4.此時sin2α=1,α=45°,

則kl=tan135°=-1.故l: x+y-3=0.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知直線l過點P(2,1),且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,則△OAB面積的最小值為_______________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點p(2,1),且與x軸、y軸的正半軸分別交于A、B兩點,O為坐標原點,則三角形OAB面積的最小值為__________.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l過點P(2,1),按下列條件求直線l的方程.

(1)直線l與直線x-y+1=0的夾角為;

(2)直線l與兩坐標軸正向圍成的三角形面積為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l過點P(2,1),按下列條件求直線l的方程

(1)直線l與直線x-y+1=0的夾角為;

(2)直線l與兩坐標軸正半軸圍成三角形面積為4。

查看答案和解析>>

同步練習冊答案